Documentation IO-Link
Product: Electronic pressure switch with display, model PSD-4

1. Description of the IO-Link functionality
IO-Link is a point-to-point connection for the communication of the PSD-4 with an IO-Link master.

2. Physical layer
The PSD-4 supports the following features:

- IO-Link specification: Version 1.1
- SIO mode: Yes
- Minimum cycle time: 2.3 ms
- Rate: COM2 (38.4 kBaud)
- Process data length: 16 bit (Frametype 2.2)
- Support of data storage: Yes
- Smart Sensor Profile: Yes

3. Process Data
The PSD-4 has 1 or 2 digital outputs and is optionally available with an 4 ... 20 mA or 0 ... 10 V analogue output signal. Both physical switching outputs are also transmitted as process data via IO-Link.

In the 'SIO Mode' (Standard I/O Mode, without IO-Link operation) the switching output 1 will switch on pin 4 of the M12 connector. In the IO-Link communication mode, this pin 4 is reserved exclusively for communication.

With a Frametype 2.2, the 16-bit process data from the pressure switch is transmitted cyclically. Bit 0 is the state of switching output 1 and Bit 1 is the state of switching output 2, where 1 respectively DC 24 V correspond to the "closed" logic state of the respective output.

The remaining 14 Bit contain the analogue value measured by the pressure switch. According to the measuring range of the sensor and the unit configured, the 14 Bit process data of the measured value, is dynamically adjusted. Multiplying the process data with the gradient (Index # 67) allows for a pressure reading in the selected unit.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Process value</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OU1</td>
<td>0 = inactive; 1 = active</td>
</tr>
<tr>
<td>1</td>
<td>OU2</td>
<td>0 = inactive; 1 = active</td>
</tr>
<tr>
<td>2 ... 15</td>
<td>ProcessData</td>
<td>-8192 ... 8191</td>
</tr>
</tbody>
</table>

Example:

Measuring range of the sensor = 0 ... 10 psi
ProcessData range = 0...1,000 with Gradient = 0.01

⇒ In this example: ProcessData = 500 = 5.0 psi

Changing the unit, will result in new ProcessData range and Gradient.
4. Service data (ISDU – Indexed Service Data Unit)

Service data is always acyclic and exchanged on the request of the IO-Link Master.
With the help of the service data, the following parameter values or instrument status can be read:

IO-Link specific parameters

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (0x10)</td>
<td>Vendor Name</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>WIKA Alexander Wiegand SE & Co. KG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 (0x11)</td>
<td>Vendor Text</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>www.wika.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 (0x12)</td>
<td>Product Name</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>PSD-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 (0x13)</td>
<td>Product ID</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 (0x14)</td>
<td>Product Text</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 (0x15)</td>
<td>Serial Number</td>
<td>StringT</td>
<td>max. 16 octets</td>
<td>R</td>
<td>S#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 (0x16)</td>
<td>Hardware Revision</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 (0x17)</td>
<td>Firmware Revision</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 (0x18)</td>
<td>Application Specific Tag</td>
<td>StringT</td>
<td>max. 32 octets</td>
<td>R/W</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 (0x20)</td>
<td>Error Count</td>
<td>UIntegerT</td>
<td>2 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 (0x24)</td>
<td>Device status</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 (0x25)</td>
<td>Detailed Device Status</td>
<td>ArrayT of OctetStringT</td>
<td>24 octets</td>
<td>R</td>
<td>00 00 00 h</td>
<td>Error storage</td>
<td></td>
</tr>
</tbody>
</table>
Output signal settings

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 (0x40)</td>
<td>Order Number</td>
<td>String</td>
<td>max. 16 octets</td>
<td>R</td>
<td>-</td>
<td>0 = bar</td>
<td>Corresponds to article number on the product label (P#…).</td>
</tr>
<tr>
<td>66 (0x42)</td>
<td>Unit Process Data</td>
<td>UInt16</td>
<td>1 octet</td>
<td>R/W</td>
<td>Order-related</td>
<td>0 = bar, 1 = mbar, 2 = MPa, 3 = kPa, 4 = PSI, 5 = kg/cm², 6 = %</td>
<td>Selection of unit for ProcessData and all related parameters (switch point settings, analogue output scaling, etc.).</td>
</tr>
<tr>
<td>67 (0x43)</td>
<td>Gradient</td>
<td>Float32</td>
<td>4 octets</td>
<td>R</td>
<td>Order-related</td>
<td>-</td>
<td>Factor for the calculation of the pressure reading. The factor could be any decimal power. ProcessData multiplied by the gradient = actual pressure in set unit. Example: 0…10 psi => ProcessData = 0…1000 with gradient: 0,01</td>
</tr>
<tr>
<td>68 (0x44)</td>
<td>Start of Measuring Range</td>
<td>Integer</td>
<td>2 octets</td>
<td>R</td>
<td>Order-related</td>
<td>-</td>
<td>Start of measuring range in set ProcessData unit</td>
</tr>
<tr>
<td>69 (0x45)</td>
<td>End of Measuring Range</td>
<td>Integer</td>
<td>2 octets</td>
<td>R</td>
<td>Order-related</td>
<td>-</td>
<td>End of measuring range in set ProcessData unit</td>
</tr>
<tr>
<td>70 (0x46)</td>
<td>OU1</td>
<td>UInt16</td>
<td>1 octet</td>
<td>R/W</td>
<td>HNO</td>
<td>0 = HNO = hysteresis function normally open, 1 = HNC = hysteresis function normally closed, 2 = FNO = window function normally open, 3 = FNC = window function normally closed</td>
<td>Switching function – switching output 1</td>
</tr>
<tr>
<td>71 (0x47)</td>
<td>DS1</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Switch delay time switching output 1 [ms]</td>
</tr>
<tr>
<td>72 (0x48)</td>
<td>DR1</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Reset delay time switching output 1 [ms]</td>
</tr>
<tr>
<td>73 (0x49)</td>
<td>Damping OU1</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Damping for the switching signal 1 (τ = 99%) [ms]. 0 = no damping active</td>
</tr>
<tr>
<td>74 (0x4A)</td>
<td>Polarity OU1</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>PNP</td>
<td>0 = PNP, 1 = NPN</td>
<td>Output Logic for switching output 1</td>
</tr>
<tr>
<td>80 (0x50)</td>
<td>OU2</td>
<td>UInt16</td>
<td>1 octet</td>
<td>R/W</td>
<td>HNO</td>
<td>0 = HNO = hysteresis function normally open, 1 = HNC = hysteresis function normally closed, 2 = FNO = window function normally open, 3 = FNC = window function normally closed</td>
<td>Switching function – switching output 2 Only available for devices with 2 switching outputs PNP/NPN.</td>
</tr>
<tr>
<td>81 (0x51)</td>
<td>DS2</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Switch delay time switching output 2 [ms]</td>
</tr>
<tr>
<td>82 (0x52)</td>
<td>DR2</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Reset delay time switching output 2 [ms]</td>
</tr>
<tr>
<td>83 (0x53)</td>
<td>Damping OU2</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Damping for the switching signal 2 (τ = 99%) [ms]. 0 = no damping active</td>
</tr>
<tr>
<td>84 (0x54)</td>
<td>Polarity OU2</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>PNP</td>
<td>0 = PNP, 1 = NPN</td>
<td>Output Logic for switching output 2</td>
</tr>
<tr>
<td>90 (0x5A)</td>
<td>OU3</td>
<td>UInt16</td>
<td>1 octet</td>
<td>R/W</td>
<td>4…20 mA</td>
<td>0 = I / 4…20mA, 1 = U / 0…10V</td>
<td>Signal setting of the analogue output. Only available for devices with analogue output 4…20 mA / 0…10 V.</td>
</tr>
<tr>
<td>91 (0x5B)</td>
<td>Analogue Output Damping</td>
<td>UInt16</td>
<td>2 octets</td>
<td>R/W</td>
<td>0</td>
<td>0…65000</td>
<td>Damping for the analogue output signal 2 (τ = 99%) [ms]. 0 = no damping active</td>
</tr>
</tbody>
</table>
Output signal settings based on selected unit

Index 66 (0x42) “Unit ProcessData” defines which configurable parameters are shown in the IO-Link tool and which parameter is prioritized.

(e.g. Index 66 is set to “bar” -> Index 140-145 is shown and can be configured, any configuration in e.g. Index 155-160 in “psi” will be ignored.)

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 (0x8C)</td>
<td>Analog Output</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Start of measuring range</td>
<td>Start … end of measuring range</td>
<td>Defines the pressure value for start of analogue output signal (e.g. 10 bar = 4 mA).</td>
</tr>
<tr>
<td>141 (0x8D)</td>
<td>Analog Output</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>End of measuring range</td>
<td>Start … end of measuring range</td>
<td>Defines the pressure value for end of analogue output signal (e.g. 78 bar = 20 mA).</td>
</tr>
<tr>
<td>142 (0x8E)</td>
<td>SP1 / FH1_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>End of measuring range</td>
<td>(Start of meas. range + 0.25 %) … end of meas. range</td>
<td>The value must always be higher than the reset point (or window low). The minimum gap between these two points has a value of 0.25% of pressure range. If the Gap is lower than the minimum hysteresis, the associate reset point will automatically be changed to observe the limits.</td>
</tr>
<tr>
<td>143 (0x8F)</td>
<td>RP1 / FL1_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>End of measuring range - 10% of range</td>
<td>Start of meas. range … (end of meas. range - 0.25 %)</td>
<td>The value must always be lower than the switch point (or window high). The minimum gap between these two points has a value of 0.25% of pressure range. If the Gap is lower than the minimum hysteresis, the associate switching point will automatically be changed to observe the limits.</td>
</tr>
<tr>
<td>144 (0x90)</td>
<td>SP2 / FH2_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>End of measuring range</td>
<td>(Start of meas. range + 0.25 %) … end of meas. range</td>
<td>See SP1 / FH1, only available for devices with 2 switching outputs.</td>
</tr>
<tr>
<td>145 (0x91)</td>
<td>RP2 / FL2_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>End of measuring range - 10% of range</td>
<td>Start of meas. range … (end of meas. range - 0.25 %)</td>
<td>See RP1 / FL1, only available for devices with 2 switching outputs.</td>
</tr>
<tr>
<td>155 to 160</td>
<td>Index 140 … 145 in Unit “mbar”</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>See 140 … 145</td>
<td>See 140 … 145</td>
<td>Index 140 … 145 in Unit “mbar”</td>
</tr>
<tr>
<td>170 to 175</td>
<td>Index 140 … 145 in Unit “MPa”</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>See 140 … 145</td>
<td>See 140 … 145</td>
<td>Index 140 … 145 in Unit “MPa”</td>
</tr>
<tr>
<td>185 to 190</td>
<td>Index 140 … 145 in Unit “kPa”</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>See 140 … 145</td>
<td>See 140 … 145</td>
<td>Index 140 … 145 in Unit “kPa”</td>
</tr>
</tbody>
</table>
Documentation IO-Link PSD-4

Page 5 of 7 / 25.08.17

Local display settings

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (0x64)</td>
<td>Display Unit</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Order-related</td>
<td>0 = bar, 1 = mbar, 2 = MPa, 3 = kPa, 4 = PSI, 5 = kg/cm², 6 = %</td>
<td>Unit of the pressure reading on the display. Depending on the Measuring Range, it may be that some units are not available.</td>
</tr>
<tr>
<td>101 (0x65)</td>
<td>Display Rotation</td>
<td>BooleanT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Standard</td>
<td>0 = Standard, 1 = 180° rotated</td>
<td>Turns display indicator by 180°</td>
</tr>
<tr>
<td>102 (0x66)</td>
<td>Display Mode</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Actual Pressure</td>
<td>0 = Actual Pressure, 1 = Highest Pressure, 2 = Lowest Pressure, 3 = Off, 4 = SP1 / FH1, 5 = RP1 / FL1, 6 = SP2 / FH2, 7 = RP2 / FL2</td>
<td>Value shown in local display mode. “5” and “6” only available for devices with 2 switching outputs.</td>
</tr>
<tr>
<td>103 (0x67)</td>
<td>Display Password</td>
<td>StringT</td>
<td>4 octets</td>
<td>R/W</td>
<td>0000</td>
<td>0000…9999</td>
<td>Sets the password for local parametrization via display and buttons. “0000” = No Password</td>
</tr>
<tr>
<td>104 (0x68)</td>
<td>Display Damping</td>
<td>UIntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>200</td>
<td>0…65000</td>
<td>Damping for the Display (r = 99%) [ms]. 0 = no damping active</td>
</tr>
<tr>
<td>105 (0x69)</td>
<td>Display Update</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>5 Hz</td>
<td>0 = 1Hz, 1 = 2Hz, 2 = 5Hz, 3 = 10Hz</td>
<td>Display update rate</td>
</tr>
<tr>
<td>106 (0x6A)</td>
<td>Locate me</td>
<td>BooleanT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Off</td>
<td>0 = Off, 1 = On</td>
<td>Helps to locate the device on a machine, flashes the switching output LEDs and displays “****” on the display. “Locate Me” has the highest priority, e.g. an error OL would have less priority. The flashing can only be disabled by setting the parameter to “off”. The buttons on the device will be disabled</td>
</tr>
</tbody>
</table>
Display Resolution

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 (0x6B)</td>
<td>Display Resolution</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>OPT</td>
<td>0 = OPT (Optimized) 1 = FULL (Full Resolution)</td>
<td>OPT = optimised (stable measurement value on display with rounding factors for the last digit, optimised to the measuring range) FULL = maximum (finest resolution, if required for a stable measurement value on display, a damping must be set for the digital indicator)</td>
</tr>
</tbody>
</table>

Diagnosis

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 (0x6E)</td>
<td>Temperature Unit</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>°C</td>
<td></td>
<td>Unit of the internal temperature measurement.</td>
</tr>
<tr>
<td>111 (0x6F)</td>
<td>Actual Temperature</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Internal temperature measurement of the electronic components.</td>
<td></td>
</tr>
<tr>
<td>112 (0x70)</td>
<td>Temperature Low</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Displays the minimum temperature value in unit of temperature since first installation / since "reset low temperature".</td>
<td></td>
</tr>
<tr>
<td>113 (0x71)</td>
<td>Temperature High</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Displays the maximum temperature value in unit of temperature since first installation / since "reset high temperature".</td>
<td></td>
</tr>
<tr>
<td>114 (0x72)</td>
<td>Temperature Low since Power Up</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Displays the minimum temperature value in unit of temperature since last power-up.</td>
<td></td>
</tr>
<tr>
<td>115 (0x73)</td>
<td>Temperature High since Power Up</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Displays the maximum temperature value in unit of temperature since last power-up.</td>
<td></td>
</tr>
<tr>
<td>120 (0x78)</td>
<td>Pressure Overload Counter</td>
<td>UIntegerT</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Duration in Pressure Overload Range (Display = "OL") [s]</td>
<td></td>
</tr>
<tr>
<td>121 (0x79)</td>
<td>Operating Hours Total</td>
<td>UIntegerT</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Displays the total amount of operating hours since first installation. [h]</td>
<td></td>
</tr>
<tr>
<td>122 (0x7A)</td>
<td>Operating Hours since Power Up</td>
<td>UIntegerT</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Displays the total amount of operating hours since power-up. [h]</td>
<td></td>
</tr>
<tr>
<td>123 (0x7B)</td>
<td>Sensor Status</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R</td>
<td>-</td>
<td>Bit0 = Sensor is defect Bit1 = Overpressure Bit3 = Underpressure Bit4 = Overtemperature Bit5 = Undertemperature .0 = no error / warning .1 = error / warning</td>
<td>Status of sensor self-diagnosis</td>
</tr>
<tr>
<td>124 (0x7C)</td>
<td>Low Pressure</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R</td>
<td></td>
<td>Displays the minimum pressure value in set unit of ProcessData since first installation / since reset with "Reset Low Pressure"</td>
<td></td>
</tr>
<tr>
<td>125 (0x7D)</td>
<td>High Pressure</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R</td>
<td></td>
<td>Displays the maximum pressure value in set unit of ProcessData since first installation / since reset with "Reset High Pressure"</td>
<td></td>
</tr>
<tr>
<td>126 (0x7E)</td>
<td>Low Pressure since Power Up</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R</td>
<td></td>
<td>Displays the minimum pressure value in set unit of ProcessData since last power-up.</td>
<td></td>
</tr>
<tr>
<td>127 (0x7F)</td>
<td>High Pressure since Power Up</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R</td>
<td></td>
<td>Displays the maximum pressure value in set unit of ProcessData since last power-up.</td>
<td></td>
</tr>
</tbody>
</table>
System commands

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (0x02)</td>
<td>Device Reset</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>128 (0x80)</td>
<td>This feature restarts the device without change of parameters.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Restore Factory Settings</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>130 (0x82)</td>
<td>Restores the device to factory settings.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset High Pressure</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>160 (0xA0)</td>
<td>Resets the high pressure counter.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Low Pressure</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>161 (0xA1)</td>
<td>Resets the low pressure counter.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Pressure Overload Counter</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>162 (0xA2)</td>
<td>Clears the overload counter to zero.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset High Temperature</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>163 (0xA3)</td>
<td>Resets the high temperature counter.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Low Temperature</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>164 (0xA4)</td>
<td>Resets the low temperature counter.</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Adjust Zero Point</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>165 (0xA5)</td>
<td>Performs an “Autozero”</td>
</tr>
</tbody>
</table>

Device Access Locks

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Length</th>
<th>Access</th>
<th>Default value</th>
<th>Value / Range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (0x0C)</td>
<td>Device Access Locks</td>
<td>RecordT</td>
<td>2 octets</td>
<td>R/W</td>
<td>00 00 h (unlocked)</td>
<td></td>
<td>Bit 0: Parameter (write) access</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 1: Data Storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 2: Local Parametrization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 3: Local User Interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Unlocked, 1 = Locked</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 0: Disables change of parameters via IO-Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 1: Disables data storage mechanism</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 2: Disable change of parameters via buttons on the device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 3: Disable access on the menu via buttons on the device</td>
</tr>
</tbody>
</table>
Dokumentation IO-Link PSD-4

Produkt: Elektronischer Druckschalter mit Display, Typ PSD-4

1. Beschreibung der IO-Link Funktionalität
IO-Link ist eine Punkt-zu-Punkt-Verbindung zwischen dem PSD-4 und einem IO-Link Master.

2. Physikalische Schicht
Der PSD-4 unterstützt folgende Eigenschaften:
- IO-Link Spezifikation: Version 1.1
- SIO Modus: Ja
- Minimale Zykluszeit: 2,3 ms
- Geschwindigkeit: COM2 (38,4 kBaud)
- Prozessdatenbreite: 16 bit (Frametyp 2.2)
- Unterstützung Datenhaltung: Ja
- Smart Sensor Profil: Ja

3. Prozessdaten
Der PSD-4 hat 1 oder 2 digitale Ausgänge und ist optional mit 4 ... 20 mA oder 0 ... 10 V Analogausgangssignal verfügbar. Beide Schaltausgänge werden als Prozessdaten über IO-Link übertragen.

Im sogenannten SIO-Modus (Standard I/O Modus), d. h. kein IO-Link Betrieb, wird der Schaltausgang 1 am Pin 4 des M12 Steckers geschaltet. Im IO-Link Kommunikationsbetrieb ist dieser Pin ausschließlich der Kommunikation vorbehalten.

Bei einem Frametyp 2.2 werden 16-Bit Prozessdaten des Druckschalters zyklisch übertragen. Bit 0 gibt den Zustand des Schaltausgangs 1 und das Bit 1 den Zustand des Schaltausgangs 2 wieder. Dabei entspricht 1 bzw. DC 24 V dem logischen Zustand „geschlossen“ auf dem entsprechenden Ausgang.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Prozesswert</th>
<th>Wertebereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OU1</td>
<td>0 = aus, 1 = an</td>
</tr>
<tr>
<td>1</td>
<td>OU2</td>
<td>0 = aus, 1 = an</td>
</tr>
<tr>
<td>2 ... 15</td>
<td>Messwert</td>
<td>-8192 ... 8191</td>
</tr>
</tbody>
</table>

Beispiel:
Messbereich des Sensors = 0 ... 10 bar
- Messwert = 0 ... 1.000
- Gradient = 0,01

Ein Wechsel der Einheit, ändert den Wertebereich des 14 Bit Messwertes und Gradienten.
4. Servicedaten (ISDU – Indexed Service Data Unit)
Servicedaten werden immer azyklisch und auf Anfrage des IO-Link Masters ausgetauscht. Mit Hilfe der Servicedaten können folgende Parameterwerte oder Gerätezustände ausgelesen werden:

IO-Link spezifisch

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (0x10)</td>
<td>Herstellername</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>WIKA Alexander Wiegand SE & Co. KG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 (0x11)</td>
<td>Herstellertext</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>www.wika.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 (0x12)</td>
<td>Produktnname</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>PSD-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 (0x13)</td>
<td>Produkt-ID</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td>Entspricht der Produkt-ID</td>
<td></td>
</tr>
<tr>
<td>20 (0x14)</td>
<td>Produkttext</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td>Zusätzliche Produktinformation</td>
<td></td>
</tr>
<tr>
<td>21 (0x15)</td>
<td>Seriennummer</td>
<td>StringT</td>
<td>max. 16 octets</td>
<td>R</td>
<td>S#</td>
<td>Entspricht Seriennummer auf Typenschild (S#).</td>
<td></td>
</tr>
<tr>
<td>22 (0x16)</td>
<td>Hardwareversion</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 (0x17)</td>
<td>Firmwareversion</td>
<td>StringT</td>
<td>max. 64 octets</td>
<td>R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 (0x18)</td>
<td>Anwendungs-</td>
<td>StringT</td>
<td>max. 32 octets</td>
<td>R/W</td>
<td>-</td>
<td>Kundenspezifische Messstellennummer, zulässige Eingaben: "A...Z"; "0...9"; ":"; Leerzeichen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spezifische</td>
<td>Markierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 (0x20)</td>
<td>Fehlerzählern</td>
<td>UIntegerT</td>
<td>2 octets</td>
<td>R</td>
<td>-</td>
<td>Fehlerzählern seit Neustart oder Rücksetzen auf Werkkonfiguration</td>
<td></td>
</tr>
<tr>
<td>36 (0x24)</td>
<td>Gerätestatus</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R</td>
<td>-</td>
<td>0 = Gerät ist OK 1 = Wartung erforderlich 2 = Außerhalb der Spezifikation 3 = Funktionsprüfung 4 = Fehler</td>
<td></td>
</tr>
<tr>
<td>37 (0x25)</td>
<td>Ausführlicher</td>
<td>ArrayT of</td>
<td>24 octets</td>
<td>R</td>
<td>00 00 00 h</td>
<td>Fehlerspeicher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerätestatus</td>
<td>OctetStringT3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Einstellung Ausgangssignal

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
</table>
| 64 (0x40) | Artikelnummer | StringT | max. 16 octets | R | - | 0 = bar
1 = mbar
2 = MPa
3 = kPa
4 = PSI
5 = kg/cm²
6 = % | Einstellung Ausgangssignal entspricht Artikelnummer auf Typenschild (P#). |
| 66 (0x42) | Einheit Prozesswert | UintegerT | 1 octet | R/W | Gemäß Bestellung | - | Auswahl der Einheit der Prozessdaten und aller abhängigen Parameter (Schaltpunkteinstellung, Analogausgangsskalierung, etc.) |
| 67 (0x43) | Gradient | Float32T | 4 octets | R | Gemäß Bestellung | - | Faktor zur Berechnung des Druckmesswertes. Der Faktor kann eine beliebige Dezimale annehmen. Messwert multipliziert mit dem Gradient = aktueller Druck in gewählter Einheit. Zum Beispiel: 0 ... 10 bar => Messwert = 0 ... 1.000 mit Gradient: 0,01 |
| 68 (0x44) | Messbereichsanfang | IntegerT | 2 octets | R | Gemäß Bestellung | - | Messbereichsanfang in konfigurierter Einheit |
| 69 (0x45) | Messbereichsende | IntegerT | 2 octets | R | Gemäß Bestellung | - | Messbereichsende in konfigurierter Einheit |
| 70 (0x46) | OU1 | UintegerT | 1 octet | R/W | HNO | 0 = HNO = Hysteresefunktion Schließer
1 = HNC = Hysteresefunktion Öffner
2 = FNO = Fensterfunktion Schließer
3 = FNC = Fensterfunktion Öffner | Schaltfunktion Schaltausgang 1 |
| 71 (0x47) | DS1 | UintegerT | 2 octets | R/W | 0 | 0...65000 | Schaltverzögerungszeit Schaltfunktion 1 [ms] |
| 72 (0x48) | DR1 | UintegerT | 2 octets | R/W | 0 | 0...65000 | Schaltverzögerungszeit Rückschaltfunktion 1 [ms] |
| 73 (0x49) | Dämpfung OU1 | UintegerT | 2 octets | R/W | 0 | 0...65000 | Dämpfung für Schaltausgang 1 (t = 99%) [ms]: 0 = keine aktive Dämpfung |
| 74 (0x4A) | Polarität OU1 | UintegerT | 2 octets | R/W | PNP | 0 = PNP
1 = NPN | Schaltfunktion Schaltausgang 1 |
| 80 (0x50) | OU2 | UintegerT | 1 octet | R/W | HNO | 0 = HNO = Hysteresefunktion Schließer
1 = HNC = Hysteresefunktion Öffner
2 = FNO = Fensterfunktion Schließer
3 = FNC = Fensterfunktion Öffner | Schaltfunktion Schaltausgang 2 |
| 81 (0x51) | DS2 | UintegerT | 2 octets | R/W | 0 | 0...65000 | Schaltverzögerungszeit Schaltfunktion 2 [ms] |
| 82 (0x52) | DR2 | UintegerT | 2 octets | R/W | 0 | 0...65000 | Schaltverzögerungszeit Rückschaltfunktion 2 [ms] |
| 83 (0x53) | Dämpfung OU2 | UintegerT | 2 octets | R/W | 0 | 0...65000 | Dämpfung für Schaltausgang 2 (t = 99%) [ms]: 0 = keine aktive Dämpfung |
| 84 (0x54) | Polarität OU2 | UintegerT | 2 octets | R/W | PNP | 0 = PNP
1 = NPN | Schaltfunktion Schaltausgang 2 |
| 90 (0x5A) | OU3 | UintegerT | 1 octet | R/W | 4...20 mA | 0 = 1/4...20mA
1 = U / 0...10V | Signaleinstellung der Analogausgangs |
| 91 (0x5B) | Analogausgang | UintegerT | 2 octets | R/W | 0 | 0...65000 | Dämpfung für den Analogausgang (t = 99%) [ms]: 0 = keine aktive Dämpfung |
Ausgangssignaleinstellung gemäß der gewählten Einheit

Index 66 (0x42) "Einheit Prozesswert" definiert welche konfigurierbaren Parameter im IO-Link-Tool angezeigt und welche Einstellungen priorisiert werden.

(z.B. Index 66 ist eingestellt auf "bar" -> Index 140-145 wird angezeigt und kann konfiguriert werden, jegliche Konfiguration in z. B. Index 155-160 in "psi" wird ignoriert, sowohl im IO-Link-Tool als auch bei Indexbasierter Parametrierung.)

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 (0x8C)</td>
<td>Analogausgang Messbereichsanfang _bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Messbereichsanfang</td>
<td>Messbereichsanfang … Messbereichsende</td>
<td>Definiert den Druck-Startwert des Analogausgangs (z. B. 10 bar = 4 mA).</td>
</tr>
<tr>
<td>141 (0x8D)</td>
<td>Analogausgang Messbereichsende _bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Messbereichsende</td>
<td>Messbereichsanfang … Messbereichsende</td>
<td>Definiert den Druck-Endwert des Analogausgangs (z. B. 78 bar = 20 mA).</td>
</tr>
<tr>
<td>142 (0x8E)</td>
<td>SP1 / FH1_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Messbereichsende</td>
<td>(Messbereichsanfang + 0,25 %) … Messbereichsende</td>
<td>Schaltpunkt /Fenster High Schaltausgang 1</td>
</tr>
<tr>
<td>143 (0x8F)</td>
<td>RP1 / FL1_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Messbereichsende - 10% der Spanne</td>
<td>Messbereichsanfang … (Messbereichsende – 0,25 %)</td>
<td>Schaltpunkt /Fenster Low Schaltausgang 1</td>
</tr>
<tr>
<td>144 (0x90)</td>
<td>SP2 / FH2_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Messbereichsende</td>
<td>(Messbereichsanfang + 0,25 %) … Messbereichsende</td>
<td>Siehe SP1 / FH1, verfügbar für Geräte mit 2 Schaltausgängen</td>
</tr>
<tr>
<td>145 (0x91)</td>
<td>RP2 / FL2_bar</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Messbereichsende - 10% der Spanne</td>
<td>Messbereichsanfang … (Messbereichsende – 0,25 %)</td>
<td>Siehe RP1 / FL1, verfügbar für Geräte mit 2 Schaltausgängen</td>
</tr>
<tr>
<td>146 to 160</td>
<td>Index 140 … 145 in Einheit "mbar"</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Siehe 140 … 145</td>
<td>Siehe 140 … 145</td>
<td>Index 140 … 145 in Einheit "mbar"</td>
</tr>
<tr>
<td>170 to 175</td>
<td>Index 140 … 145 in Einheit "MPa"</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Siehe 140 … 145</td>
<td>Siehe 140 … 145</td>
<td>Index 140 … 145 in Einheit "MPa"</td>
</tr>
<tr>
<td>185 to 190</td>
<td>Index 140 … 145 in Einheit "kPa"</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Siehe 140 … 145</td>
<td>Siehe 140 … 145</td>
<td>Index 140 … 145 in Einheit "kPa"</td>
</tr>
<tr>
<td>200 to 205</td>
<td>Index 140 … 145 in Einheit "PSI"</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Siehe 140 … 145</td>
<td>Siehe 140 … 145</td>
<td>Index 140 … 145 in Einheit "PSI"</td>
</tr>
</tbody>
</table>
Dokumentation IO-Link PSD-4

Seite 5 von 7 / 25.08.17

Index dez (hex)

<table>
<thead>
<tr>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>215 to 220 (0xD7 to 0xDC)</td>
<td>Index 140 … 145 in Einheit "kg_cm^2"</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Siehe 140 … 145</td>
<td>Index 140 … 145 in Einheit "kg_cm^2"</td>
</tr>
<tr>
<td>230 to 235 (0xE6 to 0xEB)</td>
<td>Index 140 … 145 in Einheit "%"</td>
<td>IntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>Siehe 140 … 145</td>
<td>Index 140 … 145 in Einheit "%"</td>
</tr>
</tbody>
</table>

Displayeinstellung

<table>
<thead>
<tr>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (0x64)</td>
<td>Display Einheit</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Gemäß Bestellung</td>
<td>Einheit des Anzeigewertes auf dem Display. Entsprechend des gewählten Messbereiches, können einzelne Einheiten nicht gewählt werden.</td>
</tr>
<tr>
<td>101 (0x65)</td>
<td>Displayanzeige Drehbarkeit</td>
<td>BooleanT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Standard</td>
<td>0 = Standard 1 = 180° gedreht</td>
</tr>
<tr>
<td>102 (0x66)</td>
<td>Display-Modus</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Aktueller Messwert</td>
<td>0 = Aktueller Messwert (Act) 1 = Max. Druck (H) 2 = Min. Druck (Lo) 3 = Aus (Off) 4 = SP1 / FH1 5 = RP1 / FL1 6 = SP2 / FH2 7 = RP2 / FL2</td>
</tr>
<tr>
<td>103 (0x67)</td>
<td>Display-Passwort</td>
<td>StringT</td>
<td>4 octets</td>
<td>R/W</td>
<td>0000</td>
<td>Passwortschutz für die lokale Parametrierung via Display und Tastatur "0000" = Kein Passwort</td>
</tr>
<tr>
<td>104 (0x68)</td>
<td>Display-Dämpfung</td>
<td>UIntegerT</td>
<td>2 octets</td>
<td>R/W</td>
<td>200</td>
<td>Dämpfung des Displays (r = 99%) [ms]. 0 = keine aktive Dämpfung</td>
</tr>
<tr>
<td>105 (0x69)</td>
<td>Display-Aktualisierungsrate</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>5 Hz</td>
<td>Unterstützt die Lokalisierung des Gerätes in einer Maschine, durch Blinken des Displays, **** und der Ausgangs-LED’s.</td>
</tr>
<tr>
<td>106 (0x6A)</td>
<td>Lokalisator</td>
<td>BooleanT</td>
<td>1 octet</td>
<td>R/W</td>
<td>Off</td>
<td>0 = Aus 1 = An</td>
</tr>
<tr>
<td>107 (0x6B)</td>
<td>Displayauflösung</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>OPT</td>
<td>OPT = Optimiert (stabile Messwertanzeige mit auf den Messbereich optimierten Rundungsfaktoren der letzten Ziffer) FULL = Maximal (feinste Auflösung, ggf. muss für eine stabile Messwertanzeige eine Dämpfung der Digitalanzeige eingestellt werden)</td>
</tr>
</tbody>
</table>
Diagnose

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 (0x6E)</td>
<td>Temperatureinheit</td>
<td>UIntegerT</td>
<td>1 octet</td>
<td>R/W</td>
<td>°C</td>
<td>0 = °C 1 = °F</td>
<td>Einheit der internen Temperaturmessung.</td>
</tr>
<tr>
<td>111 (0x6F)</td>
<td>Aktuelle Elektroniktemperatur</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>Interne Temperaturmessung der Elektronik.</td>
</tr>
<tr>
<td>112 (0x70)</td>
<td>Min. Temperatur</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Anzeige der minimalen Elektroniktemperatur in der gewählten Einheit seit Erstinstallation / Zurücksetzen auf Werkseinstellung.</td>
<td></td>
</tr>
<tr>
<td>113 (0x71)</td>
<td>Max. Temperatur</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Anzeige der maximalen Elektroniktemperatur in der gewählten Einheit seit Erstinstallation / Zurücksetzen auf Werkseinstellung.</td>
<td></td>
</tr>
<tr>
<td>114 (0x72)</td>
<td>Min. Temperatur seit Neustart</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Anzeige der minimalen Elektroniktemperatur in der gewählten Einheit seit Geräteuneustart.</td>
<td></td>
</tr>
<tr>
<td>115 (0x73)</td>
<td>Max. Temperatur seit Neustart</td>
<td>Float32T</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Anzeige der maximalen Elektroniktemperatur in der gewählten Einheit seit Geräteuneustart.</td>
<td></td>
</tr>
<tr>
<td>120 (0x78)</td>
<td>Überlastzähler</td>
<td>UIntegerT</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Gesamtduer im Überlastbereich (Display = "OL") [s]</td>
<td></td>
</tr>
<tr>
<td>121 (0x79)</td>
<td>Betriebsstundenzähler</td>
<td>UIntegerT</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Anzeige des Betriebsstundenzählers seit Erstinstallation. [h]</td>
<td></td>
</tr>
<tr>
<td>122 (0x7A)</td>
<td>Betriebsstundenzähler seit Neustart</td>
<td>UIntegerT</td>
<td>4 octets</td>
<td>R</td>
<td>-</td>
<td>Anzeige des Betriebsstundenzählers seit Geräteuneustart. [h]</td>
<td></td>
</tr>
</tbody>
</table>
| 123 (0x7B) | Sensor Status | UIntegerT| 1 octet| R | - | Bit0 = Sensor ist defekt
Bit1 = Überdruck
Bit2 = Unterdruck
Bit3 = Untertemperatur
Bit4 = Untertemperatur
0 = Kein Fehler / Keine Warnung
1 = Fehler / Warnung | Status der Sensor-Eigendiagnose |
| 124 (0x7C) | Min. Druck | IntegerT | 2 octets| R | | Anzeige des minimalen Druckwertes in der gewählten Einheit seit Erstinstallation / Zurücksetzen auf Werkseinstellung. |
| 125 (0x7D) | Max. Druck | IntegerT | 2 octets| R | | Anzeige des maximalen Druckwertes in der gewählten Einheit seit Erstinstallation / Zurücksetzen auf Werkseinstellung. |
| 126 (0x7E) | Min. Druck seit Neustart | IntegerT | 2 octets| R | | Anzeige des minimalen Druckwertes in der gewählten Einheit seit Geräteuneustart. |
| 127 (0x7F) | Max. Druck seit Neustart | IntegerT | 2 octets| R | | Anzeige des maximalen Druckwertes in der gewählten Einheit seit Geräteuneustart. |
Systembefehle

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (0x02)</td>
<td>Geräte rücksetzen</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>128 (0x80)</td>
<td>Geräte neustart ohne Änderung / Rücksetzen der Parameter</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Auslieferungszustand wiederherstellen</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>130 (0x82)</td>
<td>Rücksetzen des Gerätes und aller Parameter auf die Werkseinstellung</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Max. Druck</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>160 (0xA0)</td>
<td>Rücksetzen des Max. Druckzählers</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Min. Druck</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>161 (0xA1)</td>
<td>Rücksetzen des Min. Druckzählers</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Überlastzähler</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>162 (0xA2)</td>
<td>Rücksetzen des Überlastzählers</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Max. Temperatur</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>163 (0xA3)</td>
<td>Rücksetzen des Max. Temperaturzählers</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Reset Min. Temperatur</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>164 (0xA4)</td>
<td>Rücksetzen des Min. Temperaturzählers</td>
</tr>
<tr>
<td>2 (0x02)</td>
<td>Nullpunktabgleich</td>
<td>UintegerT</td>
<td>1 octet</td>
<td>W</td>
<td>-</td>
<td>165 (0xA5)</td>
<td>Ausführung „Autozero“</td>
</tr>
</tbody>
</table>

Gerätezugriffssperren

<table>
<thead>
<tr>
<th>Index dez (hex)</th>
<th>Name</th>
<th>Format</th>
<th>Länge</th>
<th>Zugriff</th>
<th>Standard Wert</th>
<th>Wertebereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (0x0C)</td>
<td>Gerätezugriffssperren</td>
<td>RecordT</td>
<td>2 octets</td>
<td>R/W</td>
<td>00 00 h (unlocked)</td>
<td>Bit 0: Parameter (Schreib) Zugriffssperre Bit 1: Datenspeicherungssperre Bit 2: Lokale Parameterisierungssperre Bit 3: Lokale Benutzer-Interface-Sperre 0 = Entsperrt, 1 = Gesperrt</td>
<td>Bit 0: Deaktiviert die Parameteränderung via IO-Link Bit 1: Deaktiviert den Data Storage Mechanismus Bit 2: Deaktiviert die Parameteränderung via der Gerätetastatur Bit 3: Deaktiviert den Menüzugriff über die Gerätetastatur</td>
</tr>
</tbody>
</table>