CPC8000-H 型高压力控制器
目录

CPC8000-H 型操作说明书 1 - 87 页

访问 www.wika.com 获取其他语言说明书。

© WIKA Alexander Wiegand SE & Co. KG 2014

在开始任何工作之前，请阅读本操作说明书！
请妥善保存，以备将来使用！

Vor Beginn aller Arbeiten Betriebsanleitung lesen!
Zum späteren Gebrauch aufbewahren!
目录

1. 一般信息 ... 4
2. 安全性 ... 6
3. 规格 ... 10
4. 设计和功能 .. 13
5. 运输、包装和存放 .. 24
6. 安装和调试 .. 25
7. 操作 ... 27
8. 远程操作 .. 55
9. 校准 ... 72
10. 维护、清洁和服务 .. 77
11. 故障 ... 81
12. 拆卸、返还和处理 .. 82
13. 附录 ... 83

WIKA CPC8000-H 高压力控制器操作说明书

3
1. 一般信息

本操作说明书中介绍的 CPC8000-H 型高压力控制器采用最先进的技术设计和制造。

所有元件在生产过程中都严格符合的质量和环境标准。管理体系通过了 ISO 9001 和 ISO 14001 认证。

本操作说明书包含重要的 CPC8000-H 操作信息。只有严格按照所有安全指令和工作指令操作，才能确保工作安全。

请遵守适用于仪器使用范围的当地事故预防条例和一般安全法规。本操作说明书是仪器的一部分，必须与 CPC8000-H 一起放置，便于熟练的操作人员随时取用。

熟练的操作人员在开始任何工作之前，必须仔细阅读并理解本操作说明书。

对于不按预期用途使用产品、不遵守操作说明、指派不合资格的人员进行操作或擅自修改 CPC8000-H 而造成的损坏，制造商概不负责。

销售文档中包含的一般条款和条件 (AGB) 适用于本仪器。将来可能进行技术修改。

按照国际标准进行出厂校准 / DKD 校准。

更多信息：

WIKA Alexander Wiegand SE & Co. KG
- 网址： www.wika.de / www.wika.com
- 相关数据表： CT28.01
- 应用顾问：
 电话： (+49) 9372/132-9986
 传真： (+49) 9372/132-8767
 电子邮件： info@wika.de

Mensor Corporation
- 网址： www.mensor.com
- 相关数据表： CT28.01
- 应用顾问：
 电话： (+49) 9372/132-9986
 传真： (+49) 9372/132-8767
 电子邮件： sales@mensor.com
1. 一般信息

1.1 符号说明

危险！
... 表示显见的危险情况，如果不加以避免，可导致严重人身伤害或死亡。

警告！
... 表示潜在的危险情况，如果不加以避免，可导致严重人身伤害或死亡。

小心！
... 表示潜在的危险情况，如果不加以避免，可导致轻微人身伤害或设备损坏，或可能造成环境破坏。

信息
... 表示有帮助的提示、建议和信息，以供高效无故障运行之需。

危险！
... 指明电力造成的危险情况。如果未遵守安全指令，可能会造成严重或致命人身伤害。

1.2 缩略语

<table>
<thead>
<tr>
<th>缩略语</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>全测量范围</td>
</tr>
<tr>
<td>DUT</td>
<td>被测设备</td>
</tr>
</tbody>
</table>
2. 安全性

警告！
安装、调试和操作前，请确保选择量程、设计和特定测量条件等方面均适宜的仪器。否则，可能会造成严重人身伤害和/或仪器损坏。

有关详细的重要安全说明，请参见本操作说明书的各个章节。

2.1 预期用途

CPC8000-H 设计用于自动完成所有类型压力设备与仪器的测试和校准工作。最多可提供两个可拆/互换压力变送器，其满量程（FS）量程为 0 … 414 bar 绝压至 1600 bar 绝压/0 … 6000 psi 绝压至 23200 psi 绝压。每个变送器模块均以内载的自有校准参数进行配置，不确定度等级为 0.01% FS。

两个变送器，通过内部控制阀调节器，提供动态输出。该系统由加注起动系统及储液罐构成。操作人员可选择特定变送器。系统无自动量程转换功能，但有两个量程可供选择，以优化仪器压力全测量范围的不确定度级别。

除两个变送器（提供两个压力量程）之外，系统集成有一个大气压变送器。CPC8000-H 配备此传感器后，结合绝压或表压变送器，可以模拟表压或绝压。

该仪器专为此处所述的预期用途设计和制造，不得另作他用。

必须严格遵守本操作说明书所载的技术规格。如因仪器操作或处理不当而导致超出其技术规格，必须立即关闭仪器，并交由授权 WIKA 服务工程师进行检查。

按照所要求的谨慎程度对待精密电子测量仪器（防止潮湿、碰撞、强磁场、静电和极端温度，切勿将任何物体插入本仪器或其开口中）。必须保护插头和插座免受沾污。

如果将仪器从寒冷环境运输至温暖环境，会形成凝结，可能导致仪器故障。请等待仪器温度达到与室温一致，再将其重新投入使用。

对于因非预期用途操作而产生的任何索赔，制造商概不负责。
2. 安全性

2.2 操作人员资格

警告！
如果操作人员不合格，可能导致人身伤害！
处理不当可能导致严重人身伤害和设备损坏。

- 本操作说明书所述的操作只可由具有下列资格的熟练操作人员进行。
- 无资格人员须远离危险区域。

熟练的操作人员
熟练的操作人员是指基于其技术培训、测量和控制技术知识，以及其对国家特定法规、当前标准和指令的了解与经验，有能力执行所述工作，并能独立辨识潜在危险的人员。

特殊的操作条件要求掌握更多相应知识，例如对腐蚀性介质的了解。

2.3 个人防护设备

个人防护设备旨在保护熟练的操作人员在工作期间的安全健康，免受危险情况伤害。使用仪器执行各种任务时，熟练的操作人员必须穿戴个人防护设备。

必要的个人防护设备必须由工作所在的公司提供。

配戴防护眼镜！
保护眼睛以防液体泼溅。

2.4 特殊危害

危险！
电流可导致生命危险。接触带电部件会有直接致命的危险。

- 电气仪器只能由熟练的电气操作人员进行安装。

警告！
拆下的 CPC8000-H 中残余的介质对人员、环境和系统有害。请采取充分的预防措施。

请勿在安全设备或应急停机装置中使用此 CPC8000-H 型精密压力控制器。不正确地使用此仪器会造成人身伤害。

如果发生故障，CPC8000-H 中可能出现高压介质。

警告！
小心受伤！仪器上安装的管道、阀门和其他设备必须能够承受将施加的最大压力，否则可能对操作人员或附近人员造成人身伤害。

警告！
高压！高压气体具有潜在危险性。这些气体中蕴藏的能量会突然释放并产生极强的冲击力。只允许接受过正确安全规程培训的人员对高压系统进行组装和操作。

小心
请使用正确的压力介质。只允许使用清洁干燥的非腐蚀性气体、空气或氮气。此仪器并非为氧气使用场合而设计。

警告
请勿使用额定值不足的可拆式主电源线。只允许使用原装主电源线！如果无法使用原装主电源线，请联系我们，或使用第 3 部分所列额定值的经认证的电源线。
2. 安全性

2.5 标签/安全标记

2.5.1 产品标签

2.5.1.1 CPC8000-H

CPC8000-H 高压力控制器
系统包括以下部件：
CPC8000-HC 压力控制器
（更多信息，请参见仪器上的单独标签）

CPC8000-HM 液压控制器
（更多信息，请参见仪器上的单独标签）

WIKA, Alexander Wiegand Strasse, 63911 Klingenberg, Germany

2.5.1.2 气动压力控制器 CPC8000-HC

用于 CPC8000-H 的 CPC8000-HC 压力控制器
电源: 交流 100…120 V / 交流 200…240 V, 50…60 Hz
能耗: 最大 130 VA
压力介质: 清洁干燥的空气或氮气
工作温度: 15…45 °C
序列号: xxxxxx
压力额定值: MPSVR (0…70 bar)
制造日期: MM/YYYY（月份/年份）

Mensor Corporation – 201 Barnes Drive – San Marcos, TX 78666

2.5.1.3 液压模块 CPC8000-HM

用于 CPC8000-H 的液压模块 CPC8000-Hm
压力介质供应/驱动气体端口: 清洁干燥的空气或氮气
压力介质测量/控制端口:
工作温度: 15…45 °C
序列号: xxxxxx
压力额定值: xxx
传感器 1: 0…1600 bar, 0.014%FS
传感器 2: 0…400 bar, 0.01%FS
制造日期: MM/YYYY（月份/年份）

WIKA, Alexander Wiegand Strasse, 63911 Klingenberg, Germany
2. 安全性

2.5.2 符号说明

安装和调试仪器前，确保阅读操作说明书！

CE，欧盟指令

有此标记的 CPC8000-H 符合相关欧盟指令。

仪器上有此标记表示不得按家庭废弃物对其进行处理。应由制造商回收处理，或由相应的市政部门处理。请参见指令 2002/96/EC。

2.6 欧洲射频发射注意事项

2.6.1 EN 55011（或 CISPR 11）

警告！

这是 A 级发射设备，专用于工业环境下工作。如果在民用或商用区域等其他环境中操作，该仪器会在某些情况下产生干扰。操作人员可能需要采取适当的纠正措施。

信息

请勿在仪器上连接长度超过 3 m/10 ft 的导线！
3. 规格

参考压力传感器

<table>
<thead>
<tr>
<th>型号</th>
<th></th>
<th>准确度</th>
<th>表压范围</th>
<th>精确度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR8050 型</td>
<td>标准型</td>
<td>0.01% FS</td>
<td>0 … 400 bar 至 0 … 700 bar</td>
<td>0.005% FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 … 6000 psi 至 0 … 10000 psi</td>
<td></td>
</tr>
<tr>
<td>CPR8850 型</td>
<td>标准型</td>
<td>0.01% FS</td>
<td>0 … 480 bar 至 0 … 1030 bar</td>
<td>0.005% FS</td>
</tr>
<tr>
<td></td>
<td>扩展型</td>
<td>0.014% FS</td>
<td>0 … 7000 psi 至 0 … 15000 psi</td>
<td>0.007% FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 … 1030 bar 至 0 … 1600 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 … 15000 psi 至 23000 psi</td>
<td></td>
</tr>
</tbody>
</table>

CPC8000-HM

仪器

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>仪器型号</td>
<td>标准：与侧面板一并安装在 19”机架上（含机架安装套件）</td>
</tr>
<tr>
<td></td>
<td>可选：与压力控制器 CPC8000-HC 一并安装在 19”机架上</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>尺寸 (mm)</th>
<th>请参见技术图纸</th>
</tr>
</thead>
<tbody>
<tr>
<td>重量</td>
<td>约 87.5 kg</td>
</tr>
<tr>
<td></td>
<td>约 193 lb</td>
</tr>
</tbody>
</table>

连接件

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>压力连接件</td>
<td>驱动气体端口：6 mm Swagelok 管接头</td>
</tr>
<tr>
<td></td>
<td>供气端口：6 mm Swagelok 管接头</td>
</tr>
<tr>
<td></td>
<td>测量/控制端口：1/4” SNOTRIK® 管接头</td>
</tr>
<tr>
<td>容许压力介质</td>
<td>驱动气体端口：干燥清洁的空气或氮气</td>
</tr>
<tr>
<td></td>
<td>供气端口：干燥清洁的空气或氮气</td>
</tr>
<tr>
<td></td>
<td>测量/控制端口：非腐蚀性液体</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>驱动气体端口（CPC8000-HC 输出）</th>
<th>8 … 35 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>供气端口</td>
<td>10 … 35 bar</td>
</tr>
<tr>
<td>测量/控制端口 DUT</td>
<td>最大 105% FS</td>
</tr>
</tbody>
</table>

控制参数

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>控制稳定性</td>
<td>< 0.005 % FS/s</td>
</tr>
<tr>
<td>控制速度</td>
<td>< 60 s</td>
</tr>
<tr>
<td>控制范围</td>
<td>20 bar 至最终值</td>
</tr>
<tr>
<td></td>
<td>200 psi 至最终值</td>
</tr>
<tr>
<td>测试容量</td>
<td>10 … 1000 ccm</td>
</tr>
</tbody>
</table>

容许环境条件

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>工作温度</td>
<td>15 … 40 °C</td>
</tr>
<tr>
<td></td>
<td>59 … 104 °F</td>
</tr>
<tr>
<td>存储温度</td>
<td>5 … 70 °C</td>
</tr>
<tr>
<td></td>
<td>41 … 158 °F</td>
</tr>
<tr>
<td>相对湿度</td>
<td>0 … 95 % 相对湿度（无凝结）</td>
</tr>
<tr>
<td>补偿温度范围</td>
<td>15 … 40 °C</td>
</tr>
<tr>
<td></td>
<td>59 … 104 °F</td>
</tr>
<tr>
<td>安装位置</td>
<td>水平</td>
</tr>
</tbody>
</table>
CPC8000-HC

<table>
<thead>
<tr>
<th>项目</th>
<th>详细信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>仪器型号</td>
<td>标准：与侧面板一并安装在 19" 机架上（含机架安装套件）可选：与液压模块 CPC8000-HM 一并安装在 19" 机架上</td>
</tr>
<tr>
<td>预热时间</td>
<td>约 25 分钟</td>
</tr>
<tr>
<td>尺寸 (mm)</td>
<td>请参见技术图纸</td>
</tr>
<tr>
<td>重量</td>
<td>约 21 kg / 约 46.3 lb</td>
</tr>
</tbody>
</table>

显示屏
- 屏幕：具有触摸功能的 9.0" 彩色 TFT 显示屏
- 分辨率：4 ... 7 位数
- 输入方法：电容触摸屏

连接件
- 压力连接件：7/16"-20 F SAE
- 压力适配接头：6 mm SWAGELOK® 螺纹管连接件；可根据要求提供其他规格
- 滤芯：所有压力端口均配备 20 微米过滤器
- 容许压力介质：干燥清洁的空气或氮气
- 超压保护：安全减压阀

容许压力
- 供气端口：8 … 35 bar
- 测量/控制端口：最大 105% FS

电源
- 电源：交流 100 … 120 V / 200 … 240 V, 50 ... 60 Hz
- 功耗：130 VA

容许环境条件
- 工作温度：15 … 45 °C
- 存储温度：5 … 70 °C
- 相对湿度：0 … 95 % 相对湿度（无凝结）
- 补偿温度范围：15 … 45 °C
- 安装位置：水平

通信
- 接口：IEEE-488.2、以太网、USB、RS-232
- 命令集：Mensor、WIKA SCPI
- 响应时间：< 100 ms

CPC8000-H 的 CE 符合性、认证和证书

CE 符合性
- **EMC 指令**：2004/108/EC，EN 61326-1 发射（1 组 A 类）和抗干扰性（工业应用）
- **低电压指令**：2006/95/EC，EN 61010-1

认证
- 证书：标准：符合 EN 10204 的 3.1 校准证书
- 选项：DKD/DAkkS 校准证书

1) **警告！** 这是 A 类发射设备，设计用于工业环境中，在民用或商用安装等其他环境中，工作条件下可对其他设备产生干扰，此时，操作人员应采取适当措施。
2) 证书 2) 为水平位置校准。

WIKA CPC8000-H 型高压力控制器操作说明书 11
3. 规格

有关认证和证书，请参见网站

有关详细规格，请参见 WIKA 数据表 CT 27.05 和订购文档。

尺寸 (mm)

前视图

侧视图

* （脚轮为选配件）
4. 设计和功能

4.1 间接

高压力控制器 CPC8000-H 由两个部件构成：气动压力控制器 CPC8000-HC 和带参考压力传感器的液压模块 CPC8000-HM。

高压力控制器 CPC8000-H 是一种多传感器的压力控制系统，旨在对绝压或表压模式下各种不同压力装置进行测试和校准。该仪器最多有两个可互换的参考压力传感器和一个可更换的大气压参考传感器。仪器有多种语言界面，以及 RS-232、USB、以太网和 IEEE 等多种标准接口。

4.2 功能

以下为 CPC8000H 中设计的重要特性简短列表:

1. 最多可配备两个高度稳定的可拆/互换压力变送器。每个变送器均为完全独立的模块，内含各自专有的校准数据。
2. 可以使用高性能气压计模块，通过绝压数据准确模拟表压，或通过表压数据模拟绝压。
3. 配备玻璃电容触摸屏的 9 英寸大屏幕彩色液晶显示屏，可提供直观的操作界面。
4. 精密压力调节器工作时极为安静，且响应时间极短。
5. 多种界面语言。

可将 CPC8000-H 安装在工作台或标准设备架上进行操作。可使用前面板输入（7 操作）或者从一个单独的“主机”控制器通过总线发送命令和查询（8 远程操作）。
4. 设计和功能

4.3 前面板

CPC8000-H 前部平滑整洁。前部主要设有大尺寸彩色显示屏，在显示屏面板右下角贴有标识标签。显示屏面板采用铰接方式安装，易于拆卸或更换仪器内部的变送器模块。有关取用变送器的说明，请参见第 10.4.1 节“变送器拆卸/更换”。显示屏面板右侧有 USB 端口和电源开关。

![前面板](image)

图 4-1 前面板

4.4 CPC8000-HC

4.4.1 电源开关

电源开关为双态装置，操作动作与使用圆珠笔类似。用力按下按钮，将按钮锁入到位，以开启设备。再次按下按钮，将其松开，以关闭系统。

4.4.2 USB 端口

前面板 USB 端口与后面板上的主机 USB 端口相同。两个端口均为将来扩展或软件升级而设计。

4.4.3 信息标签

前面板标签标示仪器名称、客户指定压力设备的已安装变送器量程，以及序列号。

4.4.4 屏幕

大尺寸（9 英寸屏幕）高清液晶彩色显示屏采用玻璃材质的电容触摸屏，可在直观的操作界面上浏览操作。通电启动时会显示主屏幕。

4.4.4.1 主屏幕功能

通电启动时，主屏幕会在显示屏右侧 1/3 区域显示数字数据输入键盘，在左侧 2/3 区域显示压力量程、控制和操作参数。

数据输入键盘可切换 4 种不同的数据输入方法。详见第 7 部分“操作”。主屏幕的数据输入区主要用于输入和调整控制设定点，以及更改主屏幕参数。主屏幕左侧 2/3 的区域（参见图 4-2 主屏幕介绍）会显示内部压力传感器的读数、当前配置设置、量程限值和标签信息（详见第 7 部分“操作”）。在此屏幕界面上可执行压力监测校准和测试功能。
4. 设计和功能

点击各选项卡、按钮或图标，可基于仪器的层级设计打开各个相应屏幕。本手册按以下结构对屏幕名称及访问该屏幕的途径进行描述：“图标名称” / [图标图形] / [选项卡] / [按钮名称]。例如，用于设置仪器传感器分辨率的屏幕会按照导航屏幕结构进行描述，从主屏幕开始，如下：设置 / [Sensor] / [Resolution]。此方式与计算机文件夹体系类似，用于说明屏幕及相应的该屏幕访问途径。所有屏幕的显示区域均分为两部分，较大区域（屏幕左侧 2/3）显示当前配置的实时信息、进行中的测试进度，并指示设备输出信息。右侧的较小区域（数据输入）有数字键盘、变量滑块或独立选择按钮（单选按钮）。根据左侧显示的测试或校准信息，在此区域可输入相应的字母数字信息或进行模式更改。

屏幕上的按钮颜色为渐变色。未使用的按钮颜色上浅下深，而选定的按钮颜色发生变化，上深下浅。按钮功能以名称直观标示，在选定按钮后，对应的功能一目了然。

按下双齿轮图标，可访问设置屏幕。设置屏幕与主屏幕形式一致，右侧输入数据，左侧显示信息。这些设置屏幕用于完成各类不同的仪器设置，包括显示、传感器、控制和远程接口设置。设置屏幕还包含用于校准内部传感器的应用，以及不同的管理设置、信息设置和配置设置。有关所有设置屏幕的详细信息，请参见第 7 部分“操作”。

点击任一设置屏幕左下角的左箭头图标可返回主屏幕。

有关所有屏幕、符号、标签和开关的完整操作说明，请见第 7 部分“操作”。

4.4.5 大气压参考变送器

大气压参考变送器使表压数据能够模拟绝压数据，同样也能使绝压数据模拟表压数据。从前面板或通过远程接口可轻松完成模式更改。

使用时，CPC8000-H 所用通道或加或减大气压参考传感器的测量值，即可得到相应的模拟数值。

大气压参考传感器有六位有效数字。
4. 设计和功能

4.4.5.1 规格

<table>
<thead>
<tr>
<th>可选大气压参考</th>
</tr>
</thead>
<tbody>
<tr>
<td>量程</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>准确度</td>
</tr>
<tr>
<td>分辨率</td>
</tr>
</tbody>
</table>

4.4.5.2 压力模式

| 原配置传感器为表压，未安装大气压参考装置。 |
| 原配置传感器为表压，已安装大气压参考装置。 |
| 原配置传感器为表压，已安装大气压参考装置，且绝压模拟模式已激活。 |

4.4.5.2.1 表压模拟模式

在表压模拟模式中，所用通道的绝压读数减去大气压参考变送器的大气压读数，即可得到表压数值。模拟模式不确定度为大气压参考变送器和所用变送器不确定度之和。

4.4.5.2.2 绝压模拟模式

在绝压模拟模式中，所用通道的表压读数加上大气压参考变送器的大气压读数，即可得到绝压数值。模拟模式不确定度为大气压参考变送器和所用变送器不确定度之和。
4. 设计和功能

4.5 后面板

4.5.1 CPC8000-HC 后面板

后面板最多可有五个气动压力端口。压力端口右侧是以太网接口、RS-232 接口、USB 接口以及电源插座。CPC8000-HM 通信接口以及 IEEE 接口在压力端口的上方。
4.5.1.1 压力端口

警告！
必须按照以下说明安装压力连接件，并遵守相关法规。须由受过培训、经过授权且熟知气动系统安全操作规程的人员进行安装。

信息
后面板上最多可有 6 个压力接口。不使用的压力接口已封堵。

大气压参考端口

图 4-4 后面板气动接口

大气压参考端口

后部所有主要压力端口均采用符合 MS16142 和 SAE J514 表 14 标准的 7/16 - 20 SAE/MS 内孔直螺纹。这些端口需要带有符合 MS33656 标准的 O 形圈的管接头凸缘密封。WIKA/Mensor 根据所选的选配件，为订购的仪器提供不同的适配接头。可提供以下适配接头：

- 6 mm 外管接头
- ¼" 管接头
- 1/8" 内螺纹 NPT
- 1/8" 内螺纹 BSPG

使用正确的匹配五金件可在这些适配接头上进行压力连接。请勿在使用 O 形圈进行密封的管接头上使用密封胶。每个密封件的完整性都特别重要，因为即使细微泄漏也会导致压力测量值产生误差。

信息
为了进行功能测试并熟悉 CPC8000-HC 的操作，可将接近正常操作期间所需容积的容量与测量/控制端口连通。

警告！
用户必须确保释放的压力介质都不会对人员、环境或本仪器造成危害。

信息
容量较大的测试对象或直径较小的长管道会对控制性能产生不利影响。
4. 设计和功能

- **供气端口**
 通过标为“Supply”的压力接口输入的压力，应比控制器中安装的最高压力变送器的满刻度压力高出约10%。

- **真空端口**
 标为“Exhaust”的压力接口用于抽真空。在表压型仪器中，该端口可保持与大气相通。

- **排气端口**
 标为“Vent”的压力接口是在某些条件下将系统压力排入大气所用的排气端口。将此端口打开，或连接可选的消声器以消减噪声。

- **参考端口**
 此压力接口用于连接与表压量程小于50 psi (4 bar)的传感器参考端口。

 信息
 该参考端口应保持与大气相通，不得连接至压力源。

- **测量/控制端口**
 处于控制模式时，测量/控制端口向 CPC8000-HM（将压力转换为液压压力）的压力倍增器提供精确控制的压力。在测量模式下，作用于测量/控制端口的压力由仪器传感器测量。

- **大气压参考**
 大气压参考端口连接至内部大气压传感器，应保持与大气相通。

与供气端口相连的供气压力越高，通过真空端口从系统排出的压力也越高。如果真空端口连接真空泵，则必须采取适当的安全预防措施，以免造成泵的损坏。

对系统进行连接前，用户必须确保采取可防止测试项或系统超压的适当保护措施。

图 4-5 气动接口使用建议

清洁干燥的空气或氦气，调节气动供气压力，设置为（大约：液压FS/50）
4.5.1.2 电气连接

小心！
必须按照以下说明进行电气安装，同时要遵守相关法规。由熟悉电气连接件安全操作规程的人员进行安装。

警告
接口线缆长度不得超过 3 米，而且必须与电压超过 60 伏的线缆分开布置。

4.5.1.3 电源

警告
在连接或断开电源前，请先关闭 CPC8000-H 系统的电源。连接电源前，确保 CPC8000-H 的额定电压和电源电压一致。只允许通过安全接地 (PE) 的连接装置连接电源！

只允许使用原装主电源线！如果无法使用原装主电源线，请联系我们，或使用第 3 部分所列额定值的经认证的电源线。

4.5.1.3.1 RS-232
CPC8000-HC 后面板上的 RS-232 接口是 9 针 SUB-D 插口。如果您的计算机上没有 RS-232 接口，可以使用带虚拟通信端口的 USB 至 RS-232 适配接头进行连接。

4.5.1.3.2 以太网接口
以太网通信端口可让 CPC8000-HC 与使用 10/100 Based-T 规范的计算机进行通信。

小心！
在将本仪器连接到网络之前，请咨询计算机资源部门，以确认与现有 IP 地址不冲突。

以太网通信通过标准 RJ-45 网线进行传输。如需直接连接到计算机，需要一根交叉以太网网线。如需通过集线器或路由器连接，需要一根直通以太网网线。

首次使用以太网通信之前，必须设置 IP 地址、网络掩码、网关和端口等四个参数。这些参数在通信设置屏幕上进行配置。

4.5.1.3.3 USB 主机接口
USB 主机接口是用于升级软件和下载设备信息的服务端口，与 CPC8000-HC 前部的 USB 主机端口功能相同。

4.5.1.3.4 USB 设备接口
USB 设备插孔是标准 USB B 型插入式接口，用于远程通信。可通过以下网址下载 USB 驱动程序:

http://www.mensor.com/download_software_instrument_en.um.WIKA?ActiveID=31350

4.5.1.3.5 IEEE-488 接口 (GPIB)
IEEE-488 接口连接设计为 24 针 IEEE-488 插口。

主机 IEEE-488 接口卡制造商提供允许在该接口卡和各种编程语言之间进行通信的软件。通常还会提供一套用于调试的交互程序。有关更多信息，请参见接口卡制造商文档。
4.设计和功能

4.5.2 CPC8000-HM 后面板

4.5.2.1 仪表
仪表显示作用于驱动气体端口的供气压力。

4.5.2.2 加注液位
这部分指示内部储液罐的加注液位。罐内设有液位开关，当液位过低时，开关会通过 CPC8000-HC 的主屏幕通知用户。

4.5.2.3 加注口
通过此口重新灌注储液罐，并通过下面的窗口观察加注液位。请勿加注超过系统显示的最高液位。

4.5.2.4 CPC8000-HC 接口
该接口务必始终连接至 CPC8000-HC。其负责在 CPC8000-HM 和 CPC8000-HC 之间传输数据。传输的数据包括液压参考传感器读数和限位开关状态等。
4. 设计和功能

4.5.2.5 压力端口

警告！
必须按照以下说明安装压力连接件，并遵守相关法规。须由受过培训、经过授权且熟知气动系统安全操作规程的人员进行安装。

4.5.2.5.1 驱动气体端口

驱动气体端口用于向内部气动控制阀及起动泵提供压力。该端口处装有工作压力调节器，以将内部压力减至所需要的水平。这些工作压力调节器需要消耗空气。

有两种向此端口提供压力的设置：

1. 使用单一供应源同时向 CPC8000-HC 和 CPC8000-HM 提供压力
 使用单一压力源同时向 CPC8000-HC 和 CPC8000-HM 提供压力时，供气压力必须调节为 CPC8000-HC 的建议供气压力。（大约：液压满刻度压力/50）

2. CPC8000-HC 与 CPC8000-HM 分开
 如果分别向 CPC8000-HM 和 CPC8000-HC 提供压力，供气压力可达到的最高值为 35 bar/500 psi。

4.5.2.5.2 测量/控制端口 CPC8000-HC

测量/控制 CPC8000-HC 端口是 CPC8000-HC 气动控制压力与压力倍增器之间的连接。根据系统的测量量程和设定点，压力最高可达 32 bar/465 psi。

4.5.2.5.3 测量/控制端口 DUT

此处连接 DUT（被检测设备）。此端口处的控制器可提供精确压力。（当控制器处于控制模式时）

信息
为了进行功能测试并熟悉 CPC8000-H 的操作，可将接近正常操作期间所需容积的容积量与测量/控制端口连通。

信息
容量较大的测试对象或直径较小的长管道会对控制性能产生不利影响。
4. 设计和功能

4.6 变送器选择

变送器测量模式可以是表压或绝压。CPC8000-H 可配备一个或两个变送器。变送器类型可以是 CPR8050 “标准型”（不确定度 0.01% FS），最高可达 700 bar/10000 psi；或 CPR8850 “高级型”（不确定度为 0.014% FS，最低为 0.01%FS），最高可达 1600 bar/23200 psi。变送器的“标准型”传感器或所有“高级型”传感器，可以两种混合使用。两个传感器结合 NVR 模块，可提供更宽广的动态量程。在排气模式下，操作人员可以选用其中一个传感器进行操作。两个传感器量程可供选择，以优化不确定度等级。通过不确定度规格和专有的控制技术，可实现准确稳定的控制。变送器 CPR8850 对压力陡增或陡降极为敏感，最糟的情况可能会损坏仪器。

使用精密气压计，以便通过绝压仪器模拟表压，或通过表压仪器模拟绝压。

<table>
<thead>
<tr>
<th>变送器 1</th>
<th>准确度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR8050 标准传感器</td>
<td>0.01% 满量程 (FS)</td>
</tr>
<tr>
<td>CPR8850 高级传感器</td>
<td>0.014% FS，最低为 0.01% FS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>变送器 2</th>
<th>准确度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR8050 标准传感器</td>
<td>0.01% 满量程 (FS)</td>
</tr>
<tr>
<td>CPR8850 高级传感器</td>
<td>0.014% FS，最低为 0.01% FS</td>
</tr>
</tbody>
</table>

4.7 交付产品

- CPC8000-HC 型压力控制器，19” 机架式样
- CPC8000-HM 型液压模块，19” 机架式样
- CPC8000-HC 和 CPC8000-HM 之间的气动连接，约 1 m/3.3 ft
- 2 m/6.5 ft 电源线
- 操作说明书
- 符合 DIN EN 10204 的 3.1 校准证书
5. 运输、包装和存放

5.1 运输
检查仪器有无运输造成的损坏。
必须及时报告明显的损坏。

5.2 包装
只有在安装时才能拆下包装。
请保留包装材料，以便在下次运输过程中提供最佳保护（例如安装场地变更、送修等）。

5.3 存放

存放地点的允许条件:
- 存储温度: 0 ... 70 °C
- 湿度: 35 ... 85 % 相对湿度 (无凝结)

避免置于以下状况中:
- 阳光直射或靠近高温物体
- 机械振动、机械冲击 (用力放下)
- 油烟、蒸汽、粉尘及腐蚀性气体
- 有可能引起爆炸的环境，易燃气体

在满足上述条件的地点将 CPC8000-H 置于原包装中存放。如果原包装不可用，按以下方式包装和存放 CPC8000-H:
1. 将仪器包装在防静电塑料薄膜中。
2. 将 CPC8000-H 连同吸振材料放入包装中。
3. 如果长时间存放（超过 30 天），在包装中放置一个干燥剂包。

警告!
存放仪器前（下述操作），请排放出所有残余介质。这对于有害健康的介质（如腐蚀性、毒性、致癌性、放射性物质等）尤为重要。
6. 安装和调试

出厂前，除功能测试外，还会检查每台设备的外观。收到设备后，请检查变送器有无运输损坏。如果发现任何明显损坏，请立刻报告给承运人。

本仪器既可放置在台面上，也可安装在机架上。对于 CPC8000-H，机架安装为可选方式。CPC8000-H 中使用的特殊传感器对倾斜和振动相对不敏感。但为进一步保证稳定性和准确度，应避免将本仪器安装在承受大电机或机械振动的表面上。

安装场所必须满足以下条件：

- 工作温度：15 至 40 °C
- 湿度：0 至 95 % 相对湿度（无凝结）
- 平坦的水平位置；安全固定的工作表面（台式型号）或安装在 19" 机架上。
- 电源线为断路装置，其插座位置应便于连接，且具有保护接地。

请避免以下影响：

- 阳光直射或靠近高温物体
- 不稳定的安装位置
- 机械振动
- 靠近高压设备、移动电话或电源等强电磁场源
- 油烟、蒸汽、粉尘及腐蚀性气体
- 具有爆炸风险的易燃气体环境

警告
在连接或断开电源前，请先关闭 CPC8000-H 系统的电源。连接电源前，确保 CPC8000-H 的额定电压和电源电压一致。只允许通过安全接地 (PE) 的连接装置连接电源！

警告
只允许使用原装主电源线！如果无法使用原装主电源线，请联系我们，或使用第 3 部分所列额定值的经认证的电源线。
6.1 开启仪器
按照第 4.5 节所述牢固安装压力连接件后，对仪器后部的电源接口通电，并打开电源开关 (ON)。仪器将执行初始化过程和系统检查。系统检查完成后，将默认切换到与下图所示类似的操作屏幕。在进行重要压力测量之前，请将仪器预热至少 25 分钟。

警告
这是防护等级为 1 级的仪器，设计使用带安全接地的电源！不得使用任何使安全接地无效的电源适配器或浪涌保护装置！电源线必须便于连接，且具有安全接地。

通风！切勿阻挡至仪器后部通风扇的气流。
本仪器既可放置在台面上，也可安装在机架上。机架安装适配件为选件。

图 6-1 主屏幕
7. 操作

7.1 一般说明

本节介绍从前面板操作 CPC8000-H 的程序。有关从外部计算机对本仪器进行操作的说明，请参见 8. 远程操作。只要按照这两部分所述程序进行操作，CPC8000-H 即可在多年优异服务期间提供最高的准确度和可靠性。

仪器通电后，大约需要 30 秒时间启动。启动过程结束时，会显示类似于“图 7-1 主屏幕分隔”的屏幕，这是操作主屏幕。此时 CPC8000-H 可开始工作。但是，如果要进行重要测试和测量，设备需在通电后预热至少 25 分钟，以确保达到额定准确度。

请注意，屏幕的蓝色背景区约占屏幕总面积的三分之二。该区域包含压力输出读数、设定点、使用的变送器量程、测量单位、限值和选择的控制模式：测量、控制或排气。

右侧栏（黑色背景区）用于输入数据、调节环境设置、定义远程操作的参数以及选择配置。可从主屏幕访问多个不同的侧栏，以达到不同的操作目标。

本节将介绍操作主屏幕的功能和相关侧栏功能。

除主屏幕外，还有一系列设置屏幕，用于调节参数和条件，例如执行校准、运行例行程序、从远程计算机操作等。所有这些设置屏幕均为黑色背景，而且有各自的侧栏（也为黑色），提供相应的选项菜单和数据输入。有关这些设置屏幕的介绍与使用说明，请参见第 7.3 节。

7.1.1 按钮、按键、选项卡和其他术语

屏幕上显示的很多文字和符号均为激活触点，也就是说，如果允许操作，点击或触按这些文字或符号会引起某些变化。本手册中，这些触点以方括号的形式标示，例如主屏幕顶部中间的按钮 [Setpoint]（请参见图 7-2 主屏幕项目）。选项卡是大多数屏幕底部显示的单选按钮，点击后可打开与选项卡所指活动相关的其他屏幕，或显示与当前屏幕有关的选项。

点击触点后，发出“哔”声表示接受操作。发出“哗啦”声（报错音）表示操作非法，例如输入的数字超出允许量程。

点击或触按后无响应的屏幕文字或符号，在本手册中称为标签、窗口、监测信息或指示信息。
7. 操作

7.2 主屏幕

7.2.1 主屏幕功能图

“图 7-2 主屏幕项目”是主屏幕功能图，反映了没有任何其他显示选项时的 CPC8000 状态。在功能图中，每项屏幕功能对应一个标题框，以及详细说明该功能和用途的章节号。
7.2.2 主屏幕功能

下表是开机启动后主屏幕上所示功能的参考列表。

<table>
<thead>
<tr>
<th>功能</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>自动量程 / 量程保持</td>
<td>7.2.3 [Range Hold]</td>
</tr>
<tr>
<td>压力读数</td>
<td>7.2.4 压力读数</td>
</tr>
<tr>
<td>设定点</td>
<td>7.2.5 [Setpoint] 按钮</td>
</tr>
<tr>
<td>设定点值</td>
<td>7.2.6 设定点值</td>
</tr>
<tr>
<td>设置</td>
<td>7.2.8 设置</td>
</tr>
<tr>
<td>设定点输入方法</td>
<td>7.2.7 设定点输入方法</td>
</tr>
<tr>
<td>数字键盘</td>
<td>7.2.7.1 数字键盘</td>
</tr>
<tr>
<td>删除输入</td>
<td>7.2.7.1 数字键盘</td>
</tr>
<tr>
<td>退格键</td>
<td>7.2.7.1 数字键盘</td>
</tr>
<tr>
<td>确认输入</td>
<td>7.2.7.1 数字键盘</td>
</tr>
<tr>
<td>数字键盘步进</td>
<td>7.2.7.2 数字键盘 / 步进</td>
</tr>
<tr>
<td>收藏</td>
<td>7.2.9 收藏</td>
</tr>
<tr>
<td>锁定屏幕</td>
<td>7.2.10 状态条</td>
</tr>
<tr>
<td>报错</td>
<td>7.2.10 状态条</td>
</tr>
<tr>
<td>二级和三级显示</td>
<td>7.2.11 二级和三级显示</td>
</tr>
<tr>
<td>限值（量程、控制和输入）</td>
<td>7.2.12 限值</td>
</tr>
<tr>
<td>条形图</td>
<td>7.2.13 条形图</td>
</tr>
<tr>
<td>压力单位</td>
<td>7.2.14 压力单位</td>
</tr>
<tr>
<td>压力类型</td>
<td>7.2.15 压力类型</td>
</tr>
<tr>
<td>操作模式</td>
<td>7.2.16 操作模式</td>
</tr>
</tbody>
</table>

7.2.3 [Range Hold]

主屏幕左上角显示 [Range Hold]。如果已安装第二个变送器，用户可以通过此按钮选择其中一个内部参考压力变送器。如果显示 [Range Hold]，说明操作人员已指定一个特定变送器作为唯一启用的变送器。无论哪种情况，该按钮正下方的活动传感器窗口会按量程显示目前启用的传感器。

按下 [Range Hold] 按钮，侧栏会显示变送器分配列表。该列表显示最多两个变送器选项，按量程分为第一或第二变送器。当前启用的量程会突出显示。点击所列量程中的任一个，该量程便即时生效。如果 CPC8000-H 受压，则无法选择其他变送器。
7. 操作

7.2.4 压力读数

“图 6-1 主屏幕”所示的大号绿色数字是连接至测量/控制 DUT 端口的传感器压力读数。数字为绿色，表示测得的压力在用户定义的时间段中处于用户定义的稳定窗口内。如果压力超出稳定窗口，数字为白色。请参见第 7.3.3.2 节，以查看稳定窗口的设置与详细说明。

信息
如果施加在测量/控制端口的外部压力比所用变送器量程上限高出 7%，则压力读数变为红色。每个变送器均配有减压阀，在高出校准压力 10% 时启用。已设置固有的内部安全措施以避免超压。

7.2.5 [Setpoint] 按钮

[Setpoint] 按钮会激活侧栏的数据输入功能，以接受新的设定点值。主屏幕上 [Setpoint] 按钮正下方的窗口中会显示设定点值（请参见第 6.2.4 节）。也可以通过四种设定点输入方法之一，来渐进调节设定点值：

- 数字键盘
- 通过向上 [▲] 和向下 [▼] 箭头键调节的数值步进
- 通过向上 [▲] 和向下 [▼] 箭头键调节的数位步进
- 程序

有关使用这些方法更改设定点的程序，请参见第 7.2.7 节“设定点输入方法”。

7.2.6 设定点值

设定点值窗口位于 [Setpoint] 按钮的正下方。该窗口显示当前压力设定点（在控制模式下，由内部调节器提供的输出压力目标值）。要编辑设定点值，首先点击 [Setpoint] 按钮，以激活系统进行设定点更改。侧栏会显示默认的数字键盘或预选的设定点输入方法。要更改设定点值，请使用第 7.2.7 节中介绍的输入方法之一。
7.操作

7.2.7 设定点输入方法

按下顶部中间的键盘图标，会显示如下四行菜单。

![图 7-5 设定点输入方法](image)

- 返回主屏幕数字键盘（请参见 7.2.7.1）。
- 设置设定点步进值（请参见 7.2.7.2）。
- 设置选定的设定点数字（请参见 7.2.7.3）。
- 激活程序和程序控制（请参见 7.2.7.4）。

7.2.7.1 数字键盘

点击 [Number Pad] 按钮，会显示用于数字输入的 10 个数字，以及小数点和符号键。符号键 [+/−] 会在正值和负值间切换。每次点击键盘上的一个按键，键盘上方的蓝色输入值窗口都会响应。输入数字串时，可以随时点击 [+/−] 以更改正负值。按下输入键时，键盘上方显示压力限值，提示用户允许输入的范围。该限值范围可以是所用传感器的量程、仪器全量程（自动量程模式下），或是在设置控制限值菜单中设置的量程限定范围（请参见第 7.3.3.1 节“最大和最小限值”）。

如果输入窗口为非法值，则按下输入键时，系统会发出报错音，同时输入值变为红色。出现这种情况时，请判断被拒原因，删除输入值，然后输入有效数字。

键盘上方显示压力限值，提示用户允许输入的范围。该限值范围可以是所用传感器的量程、仪器全量程（自动量程模式下），或是在设置控制限值菜单中设置的量程限定范围（请参见第 7.3.3.1 节“最大和最小限值”）。

图 7-4 输出压力设定点
7.操作

数字键下方有三个操作键，可对输入值窗口中显示的数字进行操作:

- 按下输入键 [✓]，可确认接受输入值窗口中显示的值，使其在系统中立即生效。
- 按下退格键 [←]，可删除所输入数字串的末位数字。多次触按该键可删除多位数字。
- 按下删除键 [×]，可删除输入值窗口中显示的整个输入值，以便重新输入，或放弃输入。

7.2.7.2 数字键盘 / 步进

“步进数字”键盘有两种不同的用法:

(1) 可以与上述数字键盘相同方法输入设定点：键入数字，按下输入键 [✓]，然后该数字立即成为设定点值。

(2) 键入数字，然后按下递增键 [▲] 或递减键 [▼]（不按输入键 [✓]），则在现有设定点值基础上增加或减去该数值。随后点击递增键或递减键，均按此步进行来继续增大或减小设定点值，直至键入新值。再按一下递增键 [▲] 或递减键 [▼]。如果按下输入键 [✓]，则新输入的值会在主屏幕上记录为新设定点值，而不是步进值。

7.2.7.3 数据位步进值设置

在数据位步进值设置输入模式下，最初会在顶部显示由五个白色数字零 (0) 和一个蓝色数字一 (1) 组成的数字串，如左图所示。点击其中任一个数字零，均可将其转换为蓝色 1。用手指滑过这些零即可展示此操作。通过此功能，将相应位置的数字激活为蓝色 1，然后按向上键 [▲] 或向下键 [▼]，可每次将设定点的一位数字增大或减小 1。

例如，在下方屏幕上，设定点为 50.0000，而操作人员要将该值更改为 51.0000、52.0000、53.0000 等等，则其只需在数据位步进值设置屏幕上点击与设定点值要更改的那一位置数对应的位数，从而激活该位数字，然后按向上键 [▲] 以增加该数字。
如果仪器分辨率设置为 4，则数据位步进设置屏幕上最右侧数字对应设定点值的最低位，最左侧的两位数字则不会用到。

7.2.7.4 程序数据输入

程序数据输入方法实现与 CPC8000-H 的自动交互。很多需手动输入的设置或流程，经过编程内置在设备中，在数据输入屏幕的程序区中保持并使用。准备的程序保存在“设置” / [Application] / [Program] 屏幕中。请参见第 7.3.5.3 节“程序”，以了解如何创建、编辑和保存程序。

通过按下程序选择按钮选定程序后，按下播放按钮 [] 以启动程序。在当前操作步骤中，可随时按下暂停按钮 [] 暂停程序，再按下播放按钮 [] 可恢复运行程序。要在程序中后退或前进，请按后退按钮 [] 或前进按钮 []。按下停止按钮 [] 可停止程序，并将 CPC8000-H 置于测量模式。

7.2.8 设置

按下侧栏的设置图标 [] 以离开主屏幕并进入设置屏幕。请注意屏幕底部的六个主题选项卡以及最左侧的箭头按钮（请参见图 7-7 设置屏幕选项卡）。点击每个选项卡可打开与其标题主题对应的屏幕。

回到主屏幕后，如果再次按下设置图标 []，则会返回最后访问的设置屏幕。有关设置屏幕及相关侧栏的操作信息，请参见第 7.3 节“设置”。“
7.2.9 收藏

收藏按钮可保存经常使用的程序，还可包含多个用于执行泄漏测试和每个传感器单点零测试的预装程序。通过“设置” / Applications /Favorites 屏幕可选择收藏菜单中显示的程序。请参见第 7.3.5.4 节以选择显示的收藏程序。

图 7-8 收藏

7.2.10 状态条

数字键盘下方是状态条，包含两个图标。

锁定屏幕
报错

图 7-9 状态条

锁定屏幕：该图标指示触摸屏状态：已锁定或已解锁，用于手动交互操作。

报错：黄色报错三角标表示错误寄存器中记录到错误。按下黄色报错图标可打开“设置” / [应用] / [维护] 屏幕，以查看错误。查看错误信息时，错误寄存器会自行清空，但不会纠正错误。仍须针对错误采取专门的纠正措施。

7.2.11 二级和三级显示

主屏幕下方有两个数据行，以备操作人员从选项列表中选择两个项目在此显示。第一行称为二级显示，第二行为三级显示。两行的选项列表相同。在“设置” / [General] [Secondary / Tertiary Display] 屏幕上可选择各选项，如下方“图 7-10 二级和三级显示”所示。有关如何设置和选择此区域选项的说明，请参见第 7.3.1.2 节“二级和三级显示”。

图 7-10 二级和三级显示
7.操作

图 7-10 二级和三级显示

图 7-11 显示选项屏幕

7.2.12 限值

主屏幕有三处显示限值。以下“图 7-12 限值”中所示的“量程限值”、“控制限值”和“输入限值”，可根据设置显示两种不同的读数。“量程限值”在量程保持模式下显示所选量程的限值，在自动量程模式下显示所用变送器的限值。“控制限值”是在“设置”/[控制]/最大限值]/[最小限值]屏幕上输入的限值（请参见第 7.3.3.1 节）。“控制限值”限定可输入的设定点值。“输入限值”等同于控制限值或量程限值的控制值（在量程保持模式下）。

图 7-12 限值
7.2.13 条形图
条形图始终处于活动状态，实时报告测量/控制端口的压力。这样可在实际压力和用户所选控制限值之间进行直观比较。

图 7-13 条形图

7.2.14 压力单位
CPC8000 当前使用的压力单位在接近主屏幕中心处显示，位于条形图的正上方。要更改压力单位，请点击当前单位图标，以在侧栏显示单位菜单页。共有七个菜单页，其中列有四十个预定义的压力单位，因此可能需要在七页中上下滚动，才能找到所需的单位。在屏幕上，点击向上符号 [▲] 或向下符号 [▼] 以滚动至下一单位页。继续滚动直至找到所需的压力单位，然后点击菜单中的该行以启用新单位。

图 7-14 压力单位

第 13.1 节“转换系数，帕斯卡”中有多个压力单位转换系数表。PSI 表包括 PSI 和其他所有可用单位之间互相转换的系数。另一个表提供 Bar 与大多数其他更常见单位互相转换的系数。

7.2.15 压力类型

7.2.16 操作模式
CPC8000-H 有三种操作模式：测量、控制和排气。系统开启并完成短暂的自我测试后，仪器会自动进入测量模式。操作人员可使用前面板显示屏下面的模式选择按键，从一个模式切换到另一模式。
7. 操作

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>信息</td>
<td>从控制模式切换到测量模式时，系统不进行排气，最后施加的压力将通过电磁阀锁定在系统中。</td>
<td></td>
</tr>
</tbody>
</table>

图 7-15 操作模式

<table>
<thead>
<tr>
<th>操作模式</th>
<th>图像</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>测量模式</td>
<td></td>
<td>在测量模式下，CPC8000-H 相当于精密压力测量仪器，可以测量施加在测量/控制 DUT 端口的压力。如果在切换到测量模式之前系统处于控制模式，则最后一次控制的压力将保持在测试组件中。 请参见第 7.2.16.1 节“测量模式”</td>
</tr>
<tr>
<td>控制模式</td>
<td></td>
<td>在控制模式下，CPC8000-H 向测量/控制 DUT 端口提供等于设定点值的控制压力。 请参见第 7.2.16.2 节“控制模式”</td>
</tr>
<tr>
<td>排气模式</td>
<td></td>
<td>排气功能可将系统（包括连接至测量/控制端口的测试组件）中的压力排入大气。 请参见第 7.2.16.3 节“排气模式”</td>
</tr>
</tbody>
</table>

WIKA CPC8000-H 高压力控制器操作说明书 37
7.操作

7.2.16.1 测量模式

在测量模式下，该仪器测量连接至测量/控制 DUT 端口的传感器处的压力。按下 [测量] 按钮可激活测量模式。

如果压力超出容许测量量程，压力以红色而非白色数字显示读数。达到约为 110% 满刻度压力时，会打开一个内置的安全减压阀，将压力释放到仪器容许范围。调节器在测量模式下不工作。可在测量模式下输入设定点值，然后按下 [控制] 按键即可激活控制模式，CPC8000-H 将根据设定点值开始控制。

下图显示测量模式下的隔离阀状态。
7.2.16.2 控制模式

在控制模式下，仪器向测量/控制 DUT 端口提供精确压力输出。当达到设定点且满足稳定窗口设置时，当前压力值的示数将变绿。

图 7-18 控制模式

按下主菜单上的[控制]按钮可激活控制模式。在测量模式或排气模式下，按下[控制]按钮也会切换到控制模式。在控制模式下，CPC8000-H 是精密压力控制器，向测量/控制 DUT 端口提供稳定的压力输出。为确保针对控制器要执行的任务对其进行正确配置，必须采取以下措施，并在设置菜单中设置相应参数。

控制限值可在“设置”/ [控制] / [限值] 屏幕上进行设置。

下图显示控制模式下的隔离阀状态，请注意，调节器在控制模式下工作。

图 7-19 控制模式下的隔离阀
7.操作

7.2.16.3 排气模式

排气模式会排放系统中的气体压力，同时关闭供气端口。在测量模式或控制模式下，按下 [Vent] 按钮会切换到排气模式。内部系统压力通过排气端口排出。

图 7-20 排气模式

警告
排气会造成系统内和连接到测量/控制端口的管线内的压力突降。排气期间务必小心，确保被测设备不受损坏。

警告
有些情况下，排气会从排气端口排放高速空气。排气期间，操作人员和敏感设备不得靠近排气端口。

警告
有些情况下，排出高压时声音很大。操作人员进行高压作业时，应配戴听觉保护设备。

下图显示排气模式下的隔离阀状态。
7.操作

7.3 设置

在通电启动仪器并显示主屏幕后，按下侧栏上的设置按钮 [] 以设置参数或更改仪器设置。

![设置按钮位置](image)

图 7-22 设置按钮的位置

下图是显示设置菜单常规布局的菜单树。蓝色要点表示对应的屏幕需要输入一级密码才能打开查看，红色要点表示需要输入二级密码才能打开查看。

![设置屏幕选项卡](image)

图 7-23 设置屏幕选项卡

7.3.1 常规选项卡

7.3.1.1 语言

按下设置 []，再按下 [常规] 选项卡，然后按下 [语言] 按钮，会显示 CPC8000 中可用的语言。请注意，[语言] 按钮右侧指示当前使用的语言。按下 [语言] 按钮时，侧栏会显示可用的语言。按下侧栏中要使用的语言，CPC8000 中每个屏幕都将使用该语言。

![语言](image)

图 7-24 语言

7.3.1.2 二级和三级显示

二级和三级显示区显示测试或校准期间所需的额外数据。在 [常规] 选项卡下，有一个选择按钮标为 [第二通道显示屏]，还有一个标为 [第三通道显示屏]。点击两个按钮中的任一个，侧栏会列出每个显示区可显示的选项。按下任一选项，该选项会显示在主菜单上相应的显示区。
7.3.1.3 亮度

使用设置菜单 [常规] 选项卡中的 [亮度] 按钮可设置仪器屏幕的整体亮度。选择 [亮度] 按钮时，侧栏会显示递增的亮度“条形图”。这是可滑动选择的亮度范围，用户可在条形图上用手指上下滑动，或只需点击图中对应亮度级的区域，即可更改亮度。

7.3.1.4 音量

在设置菜单 [常规] 选项卡中，[音量] 按钮可设置仪器操作响应声音的整体音量。选择 [音量] 按钮时，侧栏会显示递增的音量“条形图”。其中显示可用的相对音量，用户可在条形图上用手指上下滑动，或只需点击图中对应所需音量级的区域，即可更改音量。
7.3.1.5 载入（配置）

每项配置均可存储一套完整的参数和设置。需要时可调用（载入）配置。配置包含以下参数集对应的设置:

下限	速率稳定延迟
上限	排气速率
设定点	模拟模式（表压/绝压）
步进	过滤器
速率设定点	分辨率
速率步进	单位
稳定窗口	速率单位
稳定延迟	二级单位
速率稳定窗口	亮度
音量	

有关如何设置每项配置的说明，请参见第 7.3.1.5 节。选择 [载入] 按钮时，侧栏会显示多项配置以供选择。选择一项配置时，仪器会启用该配置载入的参数和设置。

7.3.1.6 保存（配置）

在设置菜单 [常规] 的 [保存] 选项卡中，[保存] 按钮可保存仪器配置，如“图 7-29 保存（配置）”所示。选择 [保存] 按钮时，侧栏会显示配置编号列表。选择某一配置编号并按下勾选标记 [√] 时，当前仪器设置会保存在此配置编号中。有关配置设置中保存的仪器设置，请参见第 7.3.1.5 节“载入（配置）”。

![图 7-28 载入（配置）](image1)

![图 7-29 保存（配置）](image2)
7.操作

在设置满足特定校准需求的参数时，可使用配置以节省时间。例如，要求校准 0 … 100 psi 的变送器时，不得超过上限 105 psi，而且压力变化速率不得超过 5 psi/s。可选用一个配置编号来设置和指定这些参数（保存），然后在运行该测试前调用这些参数（载入）。

7.3.2 传感器选项卡

在设置菜单的传感器选项卡中，设有与所有已安装压力变送器相关的参数。选择此处的设置会影响仪器压力读数的显示输出。

7.3.2.1 传感器过滤器

在设置菜单的传感器选项卡中，有一个按钮标为【过滤】。【过滤】按钮右侧显示当前过滤器设置。传感器过滤器对仪器所示的输出压力起作用，滤除压力变送器输出中较小的气动和电气变化。针对压力变送器的电气输出使用低通滤波器，通过滤波消除输出读数中的这些偏差。只需按下菜单右侧的相关按钮，即可将过滤器设置为“Off”（关闭）、“Low”（低）、“Normal”（正常）或“High”（高）。

7.3.2.2 分辨率（显示数字位数）

在设置菜单的传感器选项卡中，有一个按钮标为【分辨率】。【分辨率】按钮右侧以蓝色按钮显示当前分辨率设置。可从侧栏这一选项菜单中选择压力输出的显示分辨率。分辨率是仪器所有屏幕上压力示数的数字位数。用户可以将分辨率更改为 4、5 或 6。
7.操作

7.3.2.3 单位

在“设置”/[传感器] 选项卡中，有一个按钮标为 [单位]。选择该按钮时，侧栏会显示一组 6 个可选单位，并可使用向上箭头 [▲] 和向下箭头 [▼] 滚动查看 38 个不同单位和 2 个用户定义的单位。选择这些单位中的任一个，会更改所有内部压力变送器所感压力的测量单位，同时这些单位还会用于远程读数。按下显示当前单位的按钮，可从主屏幕直接访问单位选项列表。

图 7-32 单位

7.3.2.4 速率单位

图 7-33 速率单位

7.3.2.5 用户单位

7.3.3 控制选项卡

设置菜单 [] 的 [控制] 选项卡包含与仪器调节器压力输出相关的限值或控制显示元素。本节介绍控制限值、稳定窗口配置和速率设定点。

7.3.3.1 最大和最小限值

设置 [] / [控制] 屏幕中的 [最大限制值] 和 [最小限制值] 按钮可限定主屏幕上可以选择的设定点。只能在当前所用传感器的量程内设置这些限值。当 CPC8000-H 处于自动量程模式时，只能在主变送器的量程内设置限值，其通常主变送器的量程最大。最小限值必须低于最大限值。操作人员不得输入这些限值以外的设定点值，也不可将压力控制到限制值以外。
7.3.3.2 稳定限值

[稳态限制] 和 [稳态延时] 两个按钮在设置菜单 [控制] 选项卡中。这两个按钮用于定义压力控制或测量的稳定条件（请参见图 7-36）。控制器进入稳定状态时，压力示数的颜色由白转绿。例如，操作人员希望仅当压力输出在设定点 ±0.002% FS 保持 2 秒之后，CPC8000-H 才显示稳定示数。此时，[稳态限制] 应设为 0.002，[稳态延时] 应设为 2。图 7-37 为此示意图。

![图 7-36 稳定限值和稳定延迟](image)

7.3.3.3 罐泵

参数 [Tank Pump] 可设置设备在罐和 DUT 间尝试加注液量的灌注周期数。仪器从排气模式切换到控制模式时，需要进行加注。加注期间，仪器从罐中取液并推送到系统。

![图 7-38 速率设定点](image)
7.操作

7.3.4 远程选项卡

使用“设置”/ [远程] 选项卡，可选择与外部计算机远程通信所用的命令集。选择 IEEE-488 地址或配置以太网通信设置和串行通信设置。[远程操作] 屏幕有两页，可按页面选择按钮访问。有关远程操作和命令集的详细信息，请参见第 8 部分“远程操作”。有关电气通信连接硬件的信息，请参考第 4.5.1.2 节“电气连接”。

7.3.4.1 远程命令集设置

操作人员可通过“设置” / [远程操作] 选项卡中的[命令集设置] 按钮，选择远程通信软件内用于远程控制 CPC8000-H 功能的命令集。选择[命令集设置]按钮后，可选择侧栏所列出的所有命令集。选择后，会立即更改所用命令集，使仪器响应所选集合中的命令。请参见第 8 部分“远程操作”，以查看每个命令集中包含的命令列表。

7.3.4.2 IEEE-488 地址

7.3.4.3 以太网设置

在“设置”/ [远程操作] 选项卡中，“以太网”部分的按钮对应以太网参数。按下按钮时，侧栏会显示数字键盘或选项选择栏，可为对应的参数输入正确的数值或选择相应的选项。这些参数应设置为与计算机主机匹配。
7. 操作

7.3.4.4 串行设置

7.3.4.5 USB 设备设置

USB 设备插孔是标准 USB B 型插入式接口，用于远程通信。可通过以下网址下载 USB 驱动程序：
http://www.mensor.com/download_software_instrument_en_um.wika

7.3.5 应用程序选项卡

按下设置屏幕 [] 上的 [应用] 选项卡，会出现包含各种不同图标的屏幕，按下这些图标可打开具有下列功能的其他屏幕：

- 内部变送器校准
- 序列程序配置
- 可在操作主屏幕上查看的收藏选项
- 显示错误信息的故障排除屏幕
- 用于调准调节器和查看传感器线性化的高级屏幕
- 用于管理密码的管理屏幕
7. 操作

7.3.5.1 密码
所有校准屏幕都受密码保护，需要输入“校准密码”才可访问
- [1点校准]
- [2点校准]
- [线性化]
- [高级修正]
使用“服务密码”可访问:
- [高级]
- [管理员]

“图 7-44 应用程序选项卡 - 解锁”显示的是已解锁的 [应用] 屏幕。

信息
与仪器一起发送的默认密码如下:
校准密码: 123456
服务密码: 987654
在“设置”/ [应用] 部分的 [管理员] 页面上可更改并保存这两项密码。
如果更改后忘记密码，请联系 Mensor 或当地 Mensor 服务中心，咨询如何访问受保护部分和重置密码。
7.操作

7.3.5.2 高级修正

正在校准设备且设备与 CPC8000-H 内部的传感器所处高度（海拔）不同时，会出现偏移。在“设置” / [应用] / [高级修正] 屏幕上，可输入影响此偏移的参数。点击屏幕上的任意活动按钮可激活数字键盘。“图 7-45 高级修正屏幕”中四行显示项的每一行，均表示高级修正计算中的一项不同参数。在 [海拔 (INST-DUT)] 行，应将仪器参考点 (INST) 减去被测设备 (DUT) 的高度，然后输入所得值。在后面的字段中应输入校准系统所用的气体密度、气体温度和本地重力。默认高度为零 (0)，表明不应用高差修正。按下相应的按钮，可选择 [English] 或 [Metric] 单位。

图 7-45 高级修正屏幕（英制单位）
图 7-1 高级修正屏幕（公制单位）

7.3.5.3 程序

图 7-46 程序 - 显示

功能

<table>
<thead>
<tr>
<th>功能</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>延时</td>
<td>延迟时间 = 1 至 3600 秒（数字输入）</td>
</tr>
<tr>
<td>模式</td>
<td>设置控制模式（测量、控制或排气）</td>
</tr>
<tr>
<td>PTYPE</td>
<td>设置压力类型（表压或绝压）</td>
</tr>
<tr>
<td>RSERPT</td>
<td>以当前单位设置速率设定点（数字输入）</td>
</tr>
<tr>
<td>RUNIT</td>
<td>设置速率时间分母单位（分或秒）</td>
</tr>
<tr>
<td>传感器</td>
<td>设置所用传感器（1、2 或 3）</td>
</tr>
<tr>
<td>SEQUESTART</td>
<td>序列从头开始（无）</td>
</tr>
<tr>
<td>设定点</td>
<td>设置仪器的控制设定点（数字输入）</td>
</tr>
<tr>
<td>设定点百分比</td>
<td>设置当前量程的控制设定点（以 % 表示）（数字输入）</td>
</tr>
<tr>
<td>等待</td>
<td>等待手动输入或稳定状况（稳定或输入）</td>
</tr>
</tbody>
</table>

7.3.5.4 收藏

使用“设置”屏 / [应用] / [收藏] 屏幕，选择按下收藏图标时会显示在主屏幕上的程序。图 7-48 的左侧显示当前收藏列表。按下其中一项，再按下右侧的可用程序，即可将该程序更新到当前收藏列表中。
7.操作

7.3.5.5 故障排除

图 7-49 故障排除

7.3.5.6 高级

只有在 Mensor/WIKA 客户服务部严密监督下，才可使用“设置”[设置] [Applications] [Advanced] 选项卡及其子选项卡（[Adaptation]、[Seal Point] 和 [Linerization]）。更改此部分的参数会更改调节器响应设置，可能造成 CPC8000-H 不符合控制规范或输出压力，从而可能损坏外部连接的仪器。

7.3.5.7 管理

在“设置”[设置] [应用] [管理] 屏幕上，可更改校准密码和服务密码，并保存配置。

7.3.5.7.1 更改密码

按下 [Change Password...Calibrate] 按钮，输入新密码，然后按下勾选按钮 [确认] 以确认更改。[更改密码] 按钮的操作程序相同。

图 7-50 更改密码
7.3.6 信息选项卡

在通电启动仪器并显示主屏幕后，按下设置键 []，然后按下 [信息] 选项卡。显示的信息包括 Mensor 联系地址信息、仪器序列号、固件版本和集成的传感器列表，以及其他信息。
8. 远程操作

此远程命令集是 CPC8000-H 上默认可用的命令集。所有命令结束必须为 <CR> 和/或 <LF>。

查询命令以 ? 结尾，表示查询。数据列代表 CPC8000-H 的响应。所有响应字符串或以空格字符开头，或以 “E” 开头（表示错误队列中有错误）。所有响应字符串结尾为 <CR> 和 <LF>。错误队列中将保留发现的最近 10 个错误。

对于所有命令（无 ?），数据列代表根据命令列字符串要发送至 CPC8000-H 的参数。如果命令需要多个参数，必须使用逗号将参数隔开。

开始远程通信时发出的首批命令之一应该是 “Keylock Yes”。这将禁用屏幕上的按键和选项卡，并在屏幕上显示“Keylock”标签。锁定按键可防止有人有意或无意按下屏幕按键时可能发生的潜在冲突。

8.1. 远程操作

命令和查询格式
命令必须以 ASCII 格式进行发送且结尾必须为回车符 <cr>、换行符 <lf> 或回车符加换行符。命令不区分大小写。每个查询都返回一个响应。如果检测到错误，则响应会包含一个错误标记。

命令或查询字段
除非另外规定，否则一般均通过在命令上附加问号的方式将命令转换为查询。

数据字段
数据字段为 ASCII {字符串} 或数字 {值} 形式。在多数据字段的情况下，必须使用逗号分隔各字段。查询不带有数据字段。在以下任何格式中，字符串（文字）或值（数字）数据都可接受：

- {字符串} 数据示例：ON, OFF, mBar, inHg
- {值} 数据示例：1, 1.0, -5.678, 25.68324e-5

命令和定义
在本手册中，由字母字符组成的数据项定义为字符串，与只包含数字的数据不同，例如 “Enter 1 for ON or 0 for OFF”，其中 1 和 0 定义为值。

命令
用于查询的所有有效命令列于下面的表 6 中。对于使用布尔数据的命令，可接受以下字符串：

0 1
FALSE TRUE
NO YES
OFF ON

分隔符
空格 (SP)。

数据
如上定义，ASCII 格式表示的数字 {值} 或字母字符 {字符串} 数据。发送代码时，一个文字变量将取代括号和其中包含的字符，如下例所示。
8. 远程操作

- **终止符**
 使用换行符 (LF) 或回车符 (CR) 表示一个命令语句结束。对于 IEEE-488.2 操作，也可使用“EOI”作为替代。请始终以下列格式之一发送命令：

 1. [命令][终止符];
 2. [命令][分隔符][数据][终止符];
 3. 查询是以下格式的特殊指令：[命令][终止符]，其中，问号“?”必须紧临在终止符之前。

 收到有效查询时，CPC8000-H 将返回以 CR 和 LF 终止的 {数据}。以当前工程单位的指数计数法形式返回浮点数据。

- **输出格式**
 压力读数按照符合 OUTFORM 命令的格式以指数计数法形式返回，如下所示。OUTFORM 适用于两个压力通道。

<table>
<thead>
<tr>
<th>项目</th>
<th>格式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><sp> 压力值
 <cr><lf></td>
</tr>
<tr>
<td>2.</td>
<td><sp> 压力, 单位编号, 待机
 <cr><lf></td>
</tr>
<tr>
<td>3.</td>
<td><sp> 压力, 压力速率
 <cr><lf></td>
</tr>
<tr>
<td>4.</td>
<td><sp> 压力, 最小峰值, 最大峰值
 <cr><lf></td>
</tr>
</tbody>
</table>

表 5 输出格式
8.远程操作

8.2 Mensor 命令集

下表列出 CPC8000 当前所有命令和查询。

另外还提供可选的模拟模式，CPC8000 能够模拟不同品牌压力仪表的远程功能。有关详细信息，请联系 WIKA/Mensor。

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>?</td>
<td>无</td>
<td>以当前输出形式返回数据。</td>
</tr>
<tr>
<td>2.</td>
<td>ACQUIRE?</td>
<td>15 个字符的字符串。示例: Acquire?Test_stand_1 返回:<sp>(yes 或 no),CCC... CCC<cr><lf></td>
<td>当多个计算机要控制本仪器时，可使用此命令。如果获取控制成功，则为 Yes。如果仪器正由另一计算机控制，则为 No。CCC...= 控制仪器的计算机名称。请参见: RELEASE? 和 UNLOCK</td>
</tr>
<tr>
<td>3.</td>
<td>ADDRESS</td>
<td>0-31</td>
<td>设置 GPIB 地址</td>
</tr>
<tr>
<td>4.</td>
<td>ADDRESS?</td>
<td><sp> xx <cr><lf></td>
<td>返回 GPIB 地址</td>
</tr>
<tr>
<td>5.</td>
<td>ASSET_TAG</td>
<td>16 个字符的字符串</td>
<td>客户使用的通用目的字符串。</td>
</tr>
<tr>
<td>6.</td>
<td>ASSET_TAG?</td>
<td><sp>ssssssssssssss<cr><lf></td>
<td>返回客户资产标签字符串。</td>
</tr>
<tr>
<td>7.</td>
<td>AUTORANGE</td>
<td>ON 或 OFF</td>
<td>设置自动量程功能启用或禁用。</td>
</tr>
<tr>
<td>8.</td>
<td>AUTORANGE?</td>
<td><sp>(ON 或 OFF)<cr><lf></td>
<td>返回自动量程功能是启用还是禁用的信息。</td>
</tr>
<tr>
<td>9.</td>
<td>AUTOZERO</td>
<td>无</td>
<td>所有量程重新调零。这些调整都没有密码保护，重启后不保存。此命令用时约 60 秒，不过根据稳定用时，时间可能会更长。</td>
</tr>
<tr>
<td>10.</td>
<td>AUTOZERO?</td>
<td>S,T,X,X</td>
<td>返回自动调零数据，其中 S 表示状态（0 = 完成、1 = 本地自动调零、2 = 远程自动调零），T 表示完成估计时间（单位: 秒），X 为一个 (0) 字符，因为此时不使用该数据位置。</td>
</tr>
<tr>
<td>11.</td>
<td>AUTOZEROABORT</td>
<td>无</td>
<td>取消自动调零。已调零的所有传感器不会恢复之前的零点偏移。</td>
</tr>
<tr>
<td>12.</td>
<td>A?</td>
<td><sp>n.nnnnne+nn<cr><lf></td>
<td>返回 A 通道压力读数</td>
</tr>
<tr>
<td>13.</td>
<td>BARO?</td>
<td><sp>n.nnnnne+nn<cr><lf></td>
<td>返回大气压传感器的读数</td>
</tr>
<tr>
<td>14.</td>
<td>CALDISABLE</td>
<td>YES 或 NO</td>
<td>设置所用通道的校准是否禁用。</td>
</tr>
<tr>
<td>项目</td>
<td>命令或查询</td>
<td>数据</td>
<td>响应/功能</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>15.</td>
<td>CALDISABLE?</td>
<td><sp>(yes 或 no)<cr><lf></td>
<td>返回所用通道的校准是否禁用的信息。</td>
</tr>
<tr>
<td>16.</td>
<td>CERR</td>
<td>无</td>
<td>清除错误队列。</td>
</tr>
<tr>
<td>17.</td>
<td>CHANFUNC</td>
<td>压力，峰值，速率，速率设定点，dio，单位</td>
<td>设置二级显示功能模式，与 Chanfunc2 工作方式一样（保留以便向后兼容）。</td>
</tr>
<tr>
<td>18.</td>
<td>CHANFUNC?</td>
<td><sp>CCCCC…<cr><lf></td>
<td>返回二级替换功能模式，与 Chanfunc2 工作方式一样（保留以便向后兼容）</td>
</tr>
<tr>
<td>19.</td>
<td>CHANFUNC2</td>
<td>压力，峰值，速率，速率设定点，dio，单位</td>
<td>设置二级显示功能模式。</td>
</tr>
<tr>
<td>20.</td>
<td>CHANFUNC2?</td>
<td><sp>CCCCC…<cr><lf></td>
<td>返回二级替换功能模式。</td>
</tr>
<tr>
<td>21.</td>
<td>CHANFUNC3</td>
<td>压力，峰值，速率，速率设定点，dio，单位</td>
<td>设置三级显示功能模式。</td>
</tr>
<tr>
<td>22.</td>
<td>CHANFUNC3?</td>
<td><sp>CCCCC…<cr><lf></td>
<td>返回三级替换功能模式。</td>
</tr>
<tr>
<td>23.</td>
<td>CMDSET</td>
<td>Mensor，SCPI</td>
<td>激活用于仪器模拟模式的远程命令集。</td>
</tr>
<tr>
<td>24.</td>
<td>CMDSET?</td>
<td><sp><CCCCC<cr><lf></td>
<td>返回所用命令集标识符。</td>
</tr>
<tr>
<td>25.</td>
<td>CONTROL</td>
<td>无</td>
<td>仪器置于控制模式</td>
</tr>
<tr>
<td>26.</td>
<td>CONTROL?</td>
<td><sp>(YES 或 NO)<cr><lf></td>
<td>如果仪器处于控制模式，返回 YES；否则返回 NO。</td>
</tr>
<tr>
<td>27.</td>
<td>CRATE</td>
<td></td>
<td>设置控制速率。</td>
</tr>
<tr>
<td>28.</td>
<td>CRATE?</td>
<td><sp>CCCCC<cr><lf></td>
<td>返回控制速率 - CCCC 是长度变量，对应 CRATE 命令的参数。</td>
</tr>
<tr>
<td>29.</td>
<td>CTYBE?</td>
<td></td>
<td>返回调节器类型。</td>
</tr>
<tr>
<td>30.</td>
<td>DECPT</td>
<td>4，5，6 或 7</td>
<td>设置小数点的位数。</td>
</tr>
<tr>
<td>31.</td>
<td>DECPT?</td>
<td><sp>n<cr><lf></td>
<td>返回小数点的位数。（请参见：分辨率）</td>
</tr>
<tr>
<td>32.</td>
<td>DEFAULT</td>
<td>无</td>
<td>设置默认值。</td>
</tr>
<tr>
<td>33.</td>
<td>DHCP</td>
<td>ON 或 OFF</td>
<td>为 DHCP 设置保留。</td>
</tr>
<tr>
<td>34.</td>
<td>DHCP?</td>
<td><sp>(YES 或 NO)<cr><lf></td>
<td>为 DHCP 设置保留。</td>
</tr>
<tr>
<td>35.</td>
<td>DIO</td>
<td>2 或 0</td>
<td>2 则开启第一个数字输出针脚，0 则关闭该针脚。</td>
</tr>
<tr>
<td>36.</td>
<td>DIO?</td>
<td><sp>n<cr><lf></td>
<td>返回第一个输入和输出针脚的状态。Bit0 = 输入针脚状态，bit1 = 输出针脚状态。</td>
</tr>
</tbody>
</table>
8.远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.</td>
<td>DOUTFUNC</td>
<td><n><sp><CCCCCCC><cr><lf></td>
<td>将输出针脚 <n> 的功能设置为 NONE（无）、STABLE（稳定），PUMP（泵）、MEASURE（测量）、CONTROL（控制）或 VENT（排气）。</td>
</tr>
<tr>
<td>38.</td>
<td>DOUTFUNC?</td>
<td><sp><CCCCCCC><cr><lf></td>
<td>返回输出针脚 <n> 的功能。</td>
</tr>
<tr>
<td>39.</td>
<td>DINFUNC</td>
<td><n><sp><CCCCCCC></td>
<td>将输入针脚 <n> 的功能设置为 NONE（无）、MEASURE（测量）、CONTROL（控制）、VENT（排气）、KEYLOCK（按键锁定）或 START（开启）。</td>
</tr>
<tr>
<td>40.</td>
<td>DINFUNC?</td>
<td><sp><CCCCCCC><cr><lf></td>
<td>返回输出针脚 <n> 的功能。</td>
</tr>
<tr>
<td>41.</td>
<td>DOUTSTATE</td>
<td><n><sp>HIGH/LOW/1/0></td>
<td>将输出针脚 <n> 调高或调低。将该针脚的功能设置为“无”。</td>
</tr>
<tr>
<td>42.</td>
<td>DIOSTATE?</td>
<td><sp><n><cr><lf></td>
<td>数字 0-7 是输入位的状态。数字 8-15 是输出位的状态。返回 0 和 65536 之间的整数。</td>
</tr>
<tr>
<td>43.</td>
<td>DOC</td>
<td>mm/dd/yyyy</td>
<td>设置所用通道的校准日期。</td>
</tr>
<tr>
<td>44.</td>
<td>DOC?</td>
<td><sp>mmddyy<cr><lf></td>
<td>返回所用通道的校准日期。</td>
</tr>
<tr>
<td>45.</td>
<td>DOM?</td>
<td><sp>mm/dd/yyyy<cr><lf></td>
<td>返回制造日期</td>
</tr>
<tr>
<td>46.</td>
<td>ERROR?</td>
<td><sp>文字<cr><lf></td>
<td>返回错误消息</td>
</tr>
<tr>
<td>47.</td>
<td>ERRORTN?</td>
<td><sp>Enn-文字<cr><lf></td>
<td>返回 pcs400 错误代码和文字。</td>
</tr>
<tr>
<td>48.</td>
<td>FILTER</td>
<td>Off, Low, Normal, High</td>
<td>将读数过滤器设置为 0、80%、92%、95%。</td>
</tr>
<tr>
<td>49.</td>
<td>FILTER?</td>
<td><sp> (filter)<cr><lf></td>
<td>返回读数过滤器。</td>
</tr>
<tr>
<td>50.</td>
<td>GASDENSITY</td>
<td>单位为 lb/cuft 的值</td>
<td>设置高差压力气体密度。</td>
</tr>
<tr>
<td>51.</td>
<td>GASDENSITY?</td>
<td><sp>n.nnnne+nn<cr><lf></td>
<td>获得高差压力气体密度。</td>
</tr>
<tr>
<td>52.</td>
<td>GASTEMP</td>
<td>单位为华氏度 F 的值</td>
<td>设置高差压力气体温度。</td>
</tr>
<tr>
<td>53.</td>
<td>GASTEMP?</td>
<td><sp>n.nnnne+nn<cr><lf></td>
<td>获得高差压力气体温度</td>
</tr>
<tr>
<td>54.</td>
<td>GATEWAY</td>
<td>nnn.nnn.nnn.nnn</td>
<td>设置以太网网关地址</td>
</tr>
<tr>
<td>55.</td>
<td>GATEWAY?</td>
<td><sp>n.nnnne+nn<cr><lf></td>
<td>获得以太网网关地址</td>
</tr>
<tr>
<td>56.</td>
<td>HEIGHT</td>
<td>单位为英寸的值</td>
<td>设置高差压力高度</td>
</tr>
<tr>
<td>57.</td>
<td>HEIGHT?</td>
<td><sp>n.nnnne+nn<cr><lf></td>
<td>获得高差压力高度</td>
</tr>
<tr>
<td>58.</td>
<td>ID?</td>
<td><sp> MENSOR, 2500, sssss,v.v.vv</td>
<td>Sssss 是序列号，v.v.vv 是 CPG 2500 软件版本。</td>
</tr>
</tbody>
</table>
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.</td>
<td>IP</td>
<td>nnn.nnn.nnn.nnn</td>
<td>设置仪器的 IP 地址。</td>
</tr>
<tr>
<td>60.</td>
<td>IP?</td>
<td><sp>nnn.nnn.nnn.nnn<cr><lf></td>
<td>返回仪器的 IP 地址</td>
</tr>
<tr>
<td>61.</td>
<td>KEYLOCK</td>
<td>YES 或 NO</td>
<td>锁定或解锁键盘</td>
</tr>
<tr>
<td>62.</td>
<td>KEYLOCK?</td>
<td><sp>(yes 或 no)<cr><lf></td>
<td>返回 yes 或 no</td>
</tr>
<tr>
<td>63.</td>
<td>LIST?</td>
<td><sp>Pri,1;Sec,1;Bar,1<cr><lf></td>
<td>返回可用传感器和量程比的列表。量程比功能已作废，因此设为 1 以实现向后兼容。</td>
</tr>
<tr>
<td>64.</td>
<td>LISTCAL?</td>
<td><sp>PRI,{sn},1,{mmddyy};SEC,{sn},1,{mmddyy},BAR,{sn},mmddyy<cr><lf></td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>LISTRANGE?</td>
<td>PRI,1, min,max</td>
<td>返回所用通道已装传感器的量程</td>
</tr>
<tr>
<td>66.</td>
<td>LOCALE</td>
<td>区域代码</td>
<td>设置语言和国家代码。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>en_us</td>
<td>英语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>en_ca</td>
<td>英语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>en_gb</td>
<td>英语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fr_fr</td>
<td>法语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fr_ca</td>
<td>法语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>es_es</td>
<td>西班牙语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>es_mx</td>
<td>西班牙语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de_de</td>
<td>德语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>it_it</td>
<td>意大利语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zh_ch</td>
<td>中文</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ko_ko</td>
<td>韩语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ru_ru</td>
<td>俄语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de_ch</td>
<td>德语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fr_ch</td>
<td>法语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>en_ie</td>
<td>英语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ja_jp</td>
<td>日语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pl_pl</td>
<td>波兰语</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pt_pt</td>
<td>葡萄牙语</td>
</tr>
</tbody>
</table>

| 67. | LOCALE? | <sp>{字符串}<cr><lf> | 返回当前语言和国家区域。 |
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.</td>
<td>LOCALGRAVITY</td>
<td>单位为 ft/s² 的值</td>
<td>设置本地重力加速度（单位：ft/s²）。</td>
</tr>
<tr>
<td>69.</td>
<td>LOCALGRAVITY?</td>
<td><sp>n.nnnnn+nn<cr><lf></td>
<td>返回本地重力加速度（单位：ft/s²）</td>
</tr>
<tr>
<td>70.</td>
<td>LOWERLIMIT</td>
<td>主变送器内的值（以当前单位表示）</td>
<td>设置仪器的控制下限</td>
</tr>
<tr>
<td>71.</td>
<td>LOWERLIMIT?</td>
<td><sp>n.nnnnnE+nn<cr><lf></td>
<td>返回所用通道的控制下限（以当前单位表示）。</td>
</tr>
<tr>
<td>72.</td>
<td>MEASURE</td>
<td>无</td>
<td>仪器置于测量模式</td>
</tr>
<tr>
<td>73.</td>
<td>MEASURE?</td>
<td><sp>(YES 或 No)<cr><lf></td>
<td>如果仪器处于测量模式，返回 YES；否则返回 NO</td>
</tr>
<tr>
<td>74.</td>
<td>MODE</td>
<td>Standby、Measure、Control、Vent</td>
<td>设置操作模式</td>
</tr>
<tr>
<td>75.</td>
<td>MODE?</td>
<td><sp>XXXXXXX<cr><lf></td>
<td>返回操作模式</td>
</tr>
<tr>
<td>76.</td>
<td>NETMASK</td>
<td>nnn.nnn.nnn.nnn</td>
<td>设置以太网网络掩码。</td>
</tr>
<tr>
<td>77.</td>
<td>NETMASK?</td>
<td><sp>nnnnnn.nn.nn.nn<cr><lf></td>
<td>获取以太网网络掩码。</td>
</tr>
<tr>
<td>78.</td>
<td>OUTFORM</td>
<td>1 至 7 - 表 5</td>
<td>设置输出格式。</td>
</tr>
<tr>
<td>79.</td>
<td>OUTFORM?</td>
<td><sp>X<cr><lf></td>
<td>返回输出格式（请参见表 5）。</td>
</tr>
<tr>
<td>80.</td>
<td>PEAKMAX?</td>
<td><sp>n.nnnnn+n<cr><lf></td>
<td>返回自 peakreset 命令发送后的最大压力。</td>
</tr>
<tr>
<td>81.</td>
<td>PEAKMIN?</td>
<td><sp>n.nnnnn+n<cr><lf></td>
<td>返回自 peakreset 命令发送后的最小压力。</td>
</tr>
<tr>
<td>82.</td>
<td>PEAKRESET</td>
<td>无</td>
<td>重新设置峰值。</td>
</tr>
<tr>
<td>83.</td>
<td>PORT</td>
<td>nnnnnnn</td>
<td>设置仪器以太网端口</td>
</tr>
<tr>
<td>84.</td>
<td>PORT?</td>
<td><sp>nnnnnn<cr><lf></td>
<td>返回仪器以太网端口。</td>
</tr>
<tr>
<td>85.</td>
<td>PTYPE</td>
<td>Absolute、Gauge 或 Differential</td>
<td>设置仪器压力类型 - 仅在安装可选大气压传感器后才可使用。</td>
</tr>
<tr>
<td>86.</td>
<td>PTYPE?</td>
<td><sp>CCCCC<cr><lf></td>
<td>返回压力类型“Absolute”或“Gauge”</td>
</tr>
<tr>
<td>87.</td>
<td>RANGEMAX?</td>
<td><sp>XXXXXXX<cr><lf></td>
<td>返回所用变送器的最大量程（以当前单位表示）。</td>
</tr>
<tr>
<td>88.</td>
<td>RANGEMIN?</td>
<td><sp>XXXXXXX<cr><lf></td>
<td>返回所用变送器的最小量程（以当前单位表示）。</td>
</tr>
<tr>
<td>89.</td>
<td>RATE?</td>
<td><sp>XXXXXXX<cr><lf></td>
<td>返回仪器的速率读数（以当前单位/秒表示）。</td>
</tr>
<tr>
<td>90.</td>
<td>RDECPT?</td>
<td><sp>n<cr><lf></td>
<td>返回所用通道速率小数点的位数。 （请参见 RESOLUTION）</td>
</tr>
</tbody>
</table>

WIKA CPC8000-H 型高压力控制器操作说明书 61
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.</td>
<td>RELEASE?</td>
<td>15 个字符的字符串</td>
<td>要在多个计算机环境中释放对仪器的控制，使用此命令。如果释放成功，则为 Yes。如果仪器正由另一计算机控制，则为 No。CCC… = 控制仪器的计算机名称，或 AVAILABLE。</td>
</tr>
<tr>
<td>92.</td>
<td>RESOLUTION</td>
<td>n</td>
<td>设置有效数字的位数。请参见 DECPT?</td>
</tr>
<tr>
<td>93.</td>
<td>RESOLUTION?</td>
<td><sp>n<cr><lf></td>
<td>返回有效数字的位数。请参见 DECPT?</td>
</tr>
<tr>
<td>94.</td>
<td>RFILTER</td>
<td>单位为 % 的值</td>
<td>设置速率过滤器的百分比 (%)。</td>
</tr>
<tr>
<td>95.</td>
<td>RFILTER?</td>
<td><sp>n.nnnn+nn<cr><lf></td>
<td>返回速率过滤器。</td>
</tr>
<tr>
<td>96.</td>
<td>RSETPT</td>
<td>以当前单位表示的值</td>
<td>设置速率设定点。</td>
</tr>
<tr>
<td>97.</td>
<td>RSETPT?</td>
<td><sp>n.nnnnE+nn<cr><lf></td>
<td>返回速率设定点。</td>
</tr>
<tr>
<td>98.</td>
<td>RUNITS</td>
<td>Sec, min, hr</td>
<td>设置速率时间单位。</td>
</tr>
<tr>
<td>99.</td>
<td>RUNITS?</td>
<td><sp>XXXX<cr><lf></td>
<td>返回速率时间单位。</td>
</tr>
<tr>
<td>100.</td>
<td>SBAUD</td>
<td>9600, 19200, 38400, 57600</td>
<td>设置串口波特率</td>
</tr>
<tr>
<td>101.</td>
<td>SBAUD?</td>
<td><sp>XXXX<cr><lf></td>
<td>返回串口波特数据。</td>
</tr>
<tr>
<td>102.</td>
<td>SDATA</td>
<td>7 或 8</td>
<td>设置串口数据位数</td>
</tr>
<tr>
<td>103.</td>
<td>SDATA?</td>
<td><sp>X<cr><lf></td>
<td>返回串口数据位数。</td>
</tr>
<tr>
<td>104.</td>
<td>SENSOR</td>
<td>1，2，3，或 PRIMARY, SECONDARY, TERTIARY</td>
<td>设置所用传感器。</td>
</tr>
<tr>
<td>105.</td>
<td>SENSOR?</td>
<td><sp>XXXXXXX,1<cr><lf></td>
<td>以长字符串的格式返回所用传感器。</td>
</tr>
<tr>
<td>106.</td>
<td>SENSORID?</td>
<td><sp>Mensor QRS,SN XXXXXX,VER V.VV</td>
<td>返回所用传感器的序列号和固件版本。</td>
</tr>
<tr>
<td>107.</td>
<td>SETPT</td>
<td>上下限值内的值</td>
<td>设置仪器的控制设定点。</td>
</tr>
<tr>
<td>108.</td>
<td>SETPT?</td>
<td><sp>XXXXX<cr><lf></td>
<td>返回控制设定点（以当前单位表示）。</td>
</tr>
<tr>
<td>109.</td>
<td>SETPT%</td>
<td>以当前量程 % 表示的值</td>
<td>设置控制设定点（以当前量程 % 表示）</td>
</tr>
<tr>
<td>110.</td>
<td>SETPTPCT</td>
<td>以当前量程 % 表示的值</td>
<td>设置控制设定点（以当前量程 % 表示）</td>
</tr>
<tr>
<td>111.</td>
<td>SETPTPCT?</td>
<td><sp>n.nnnn+nn<cr><lf></td>
<td>返回当前设定点（以当前量程 % 表示）。</td>
</tr>
<tr>
<td>112.</td>
<td>SPAN</td>
<td>所需压力或？</td>
<td>设置所用通道的测量范围或设为？以清除先前值，必须大于 50% FS 且有 1% 的限定范围。</td>
</tr>
<tr>
<td>113.</td>
<td>SPAN?</td>
<td><sp>XXXXXXX<cr><lf></td>
<td>返回所用通道的测量范围比例因子。</td>
</tr>
</tbody>
</table>
8.远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.</td>
<td>SPARITY</td>
<td>偶数，奇数，无</td>
<td>设置串口奇偶性</td>
</tr>
<tr>
<td>115.</td>
<td>SPARITY?</td>
<td><sp>CCCC<cr><lf></td>
<td>返回串口奇偶性</td>
</tr>
<tr>
<td>116.</td>
<td>SRQMASK</td>
<td>稳定，错误或两者皆有</td>
<td>设置 CPC8000，使其在压力控制稳定或出现错误时通过 IEEE 发送服务请求 (SRQ)。其分别为十六进制 80 和 40。</td>
</tr>
<tr>
<td>117.</td>
<td>SRQMASK?</td>
<td><sp>{字符串}<cr><lf></td>
<td>返回“stable”、“error”或“error, stable”，具体取决于 SRQ。</td>
</tr>
<tr>
<td>118.</td>
<td>SSTOP</td>
<td>1 或 2</td>
<td>设置串口终止位。</td>
</tr>
<tr>
<td>119.</td>
<td>SSTOP?</td>
<td><sp>X<cr><lf></td>
<td>返回串口终止位</td>
</tr>
<tr>
<td>120.</td>
<td>STABLE?</td>
<td><sp>(YES 或 NO)<cr><lf></td>
<td>如果仪器稳定，返回 Yes；否则返回 No。</td>
</tr>
<tr>
<td>121.</td>
<td>STABLEDELAY</td>
<td>0 至 65535</td>
<td>将稳定时间设置为指定秒数。</td>
</tr>
<tr>
<td>122.</td>
<td>STABLEDELAY?</td>
<td><sp>XXXXXXXX<cr><lf></td>
<td>返回稳定时间。</td>
</tr>
<tr>
<td>123.</td>
<td>STABLETIME</td>
<td>0 至 65535</td>
<td>将稳定时间设置为指定秒数。</td>
</tr>
<tr>
<td>124.</td>
<td>STABLETIME?</td>
<td><sp>XXXXXXXX<cr><lf></td>
<td>返回稳定时间。</td>
</tr>
<tr>
<td>125.</td>
<td>STABLEWIN</td>
<td>%FS 值</td>
<td>设置稳定窗口为 %FS</td>
</tr>
<tr>
<td>126.</td>
<td>STABLEWIN?</td>
<td><sp>n.nnnnE+nn<cr><lf></td>
<td>返回稳定窗口。</td>
</tr>
<tr>
<td>127.</td>
<td>STANDBY</td>
<td>无</td>
<td>仪器置于待机模式</td>
</tr>
<tr>
<td>128.</td>
<td>STANDBY?</td>
<td><sp>(YES 或 NO)<cr><lf></td>
<td>如果仪器处于待机模式，返回 YES，否则返回 NO</td>
</tr>
<tr>
<td>129.</td>
<td>STEP</td>
<td>处于上下限值内以及所用传感器量程内的值</td>
<td>设置仪器的控制步进值大小</td>
</tr>
<tr>
<td>130.</td>
<td>STEP-</td>
<td>无</td>
<td>使设定点下降一个步进值</td>
</tr>
<tr>
<td>131.</td>
<td>STEP+</td>
<td>无</td>
<td>使设定点上升一个步进值</td>
</tr>
<tr>
<td>132.</td>
<td>STEP?</td>
<td><sp>+n.nnnnE+nn<cr><lf></td>
<td>返回仪器的控制步进值</td>
</tr>
<tr>
<td>133.</td>
<td>STEP%</td>
<td>以当前量程 % 表示的值</td>
<td>设置控制步进值（以当前量程 % 表示）。</td>
</tr>
<tr>
<td>134.</td>
<td>STEPPCT</td>
<td>以当前量程 % 表示的值</td>
<td>设置控制步进值（以当前量程 % 表示）。</td>
</tr>
<tr>
<td>135.</td>
<td>STEPPCT?</td>
<td><sp>n.nnnnE+nn<cr><lf></td>
<td>返回控制步进值（以当前量程 % 表示）。</td>
</tr>
<tr>
<td>136.</td>
<td>UNITS</td>
<td>单位代码或文字（表 7）</td>
<td>设置所用通道的工程单位</td>
</tr>
<tr>
<td>137.</td>
<td>UNITS?</td>
<td><sp>CCCC<cr><lf></td>
<td>返回所用通道的压力单位，以文字字符串表示。</td>
</tr>
<tr>
<td>138.</td>
<td>UNLOCK</td>
<td>无</td>
<td>释放 Acquire 锁定。请参见 ACQUIRE？和 RELEASE？</td>
</tr>
</tbody>
</table>
8.远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>数据</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>139.</td>
<td>UPPERLIMIT</td>
<td>主变送器量程内的值（以当前单位表示）。</td>
<td>设置所用变送器的控制上限值。</td>
</tr>
<tr>
<td>140.</td>
<td>UPPERLIMIT?</td>
<td><sp>xxxxxxx<cr><lf></td>
<td>返回所用变送器的控制上限值。</td>
</tr>
<tr>
<td>141.</td>
<td>VENT</td>
<td>无</td>
<td>仪器置于排气模式</td>
</tr>
<tr>
<td>142.</td>
<td>VENT?</td>
<td><sp>(YES 或 NO)<cr><lf></td>
<td>如果仪器处于排气模式，返回 YES，否则返回 NO</td>
</tr>
<tr>
<td>143.</td>
<td>WINDOW</td>
<td>以当前单位表示的值</td>
<td>设置所用通道的指数过滤器窗口。</td>
</tr>
<tr>
<td>144.</td>
<td>WINDOW?</td>
<td><sp>n.nnnnne+nn<cr><lf></td>
<td>返回所用通道的指数过滤器窗口。</td>
</tr>
<tr>
<td>145.</td>
<td>ZERO</td>
<td>所需压力或？</td>
<td>设置零点以设置压力，或设为？以清除先前值。</td>
</tr>
<tr>
<td>146.</td>
<td>ZERO?</td>
<td><sp>xxxxxxx<cr><lf></td>
<td>返回所用通道的零点偏移。</td>
</tr>
</tbody>
</table>
8.远程操作

8.2.1 错误代码

<table>
<thead>
<tr>
<th>代码</th>
<th>串口轮询字节</th>
<th>说明</th>
<th>返回错误字符串</th>
</tr>
</thead>
<tbody>
<tr>
<td>E00</td>
<td>00h</td>
<td>无错误</td>
<td>NO ERRORS</td>
</tr>
<tr>
<td>E05</td>
<td>45h</td>
<td>参数错误</td>
<td>EGPIB PARAMETER ERROR:发送的字符串</td>
</tr>
<tr>
<td>E07</td>
<td>47h</td>
<td>语法错误</td>
<td>EGPIB SYNTAX ERROR:发送的字符串</td>
</tr>
</tbody>
</table>
8.远程操作

8.2.2 单位语法

<table>
<thead>
<tr>
<th>项目</th>
<th>说明</th>
<th>输出格式</th>
<th>类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>磅/平方英寸</td>
<td>PSI</td>
<td>英制</td>
</tr>
<tr>
<td>2.</td>
<td>0 °C 下英寸汞柱</td>
<td>INHG</td>
<td>英制</td>
</tr>
<tr>
<td>3.</td>
<td>60 °F 下英寸汞柱</td>
<td>INHG</td>
<td>英制</td>
</tr>
<tr>
<td>4.</td>
<td>4 °C 下英寸水柱</td>
<td>INH2O</td>
<td>英制</td>
</tr>
<tr>
<td>5.</td>
<td>20 °C 下英寸汞柱</td>
<td>INH2O</td>
<td>英制</td>
</tr>
<tr>
<td>6.</td>
<td>60 °F 下英寸水柱</td>
<td>INH2O</td>
<td>英制</td>
</tr>
<tr>
<td>7.</td>
<td>4 °C 下英尺水柱</td>
<td>FTH2O</td>
<td>英制</td>
</tr>
<tr>
<td>8.</td>
<td>20 °C 下英尺水柱</td>
<td>FTH2O</td>
<td>英制</td>
</tr>
<tr>
<td>9.</td>
<td>60 °F 下英尺水柱</td>
<td>FTH2O</td>
<td>英制</td>
</tr>
<tr>
<td>10.</td>
<td>毫托</td>
<td>MTO RR</td>
<td>公制</td>
</tr>
<tr>
<td>11.</td>
<td>0 °C 下英寸海水柱</td>
<td>INSW</td>
<td>英制</td>
</tr>
<tr>
<td>12.</td>
<td>0 °C 下英尺海水柱</td>
<td>FTSW</td>
<td>英制</td>
</tr>
<tr>
<td>13.</td>
<td>大气压</td>
<td>ATM</td>
<td>英制</td>
</tr>
<tr>
<td>14.</td>
<td>巴</td>
<td>BAR</td>
<td>公制</td>
</tr>
<tr>
<td>15.</td>
<td>毫巴</td>
<td>MBAR</td>
<td>公制</td>
</tr>
<tr>
<td>16.</td>
<td>4 °C 下毫米水柱</td>
<td>MMH2O</td>
<td>公制</td>
</tr>
<tr>
<td>17.</td>
<td>4 °C 下厘米水柱</td>
<td>CMH2O</td>
<td>公制</td>
</tr>
<tr>
<td>18.</td>
<td>4 °C 下米水柱</td>
<td>MH2O</td>
<td>公制</td>
</tr>
<tr>
<td>19.</td>
<td>0 °C 下毫米汞柱</td>
<td>MMHG</td>
<td>公制</td>
</tr>
<tr>
<td>20.</td>
<td>0 °C 下厘米汞柱</td>
<td>CMHG</td>
<td>公制</td>
</tr>
<tr>
<td>21.</td>
<td>托</td>
<td>TORR</td>
<td>公制</td>
</tr>
<tr>
<td>22.</td>
<td>千帕斯卡</td>
<td>KPA</td>
<td>公制</td>
</tr>
<tr>
<td>23.</td>
<td>帕斯卡</td>
<td>PA</td>
<td>公制</td>
</tr>
<tr>
<td>24.</td>
<td>达因/平方厘米</td>
<td>DY/CM2</td>
<td>公制</td>
</tr>
<tr>
<td>25.</td>
<td>克/平方厘米</td>
<td>G/CM2</td>
<td>公制</td>
</tr>
<tr>
<td>26.</td>
<td>千克/平方厘米</td>
<td>KG/CM2</td>
<td>公制</td>
</tr>
<tr>
<td>27.</td>
<td>0 °C 下米海水柱</td>
<td>MSW</td>
<td>公制</td>
</tr>
<tr>
<td>28.</td>
<td>盎司/平方英寸</td>
<td>OSI</td>
<td>英制</td>
</tr>
<tr>
<td>29.</td>
<td>磅/平方英尺</td>
<td>PSF</td>
<td>英制</td>
</tr>
<tr>
<td>30.</td>
<td>吨/平方英尺</td>
<td>TSF</td>
<td>英制</td>
</tr>
<tr>
<td>31.</td>
<td>0 °C 下微米汞柱</td>
<td>mHG</td>
<td>公制</td>
</tr>
<tr>
<td>32.</td>
<td>吨/平方英寸</td>
<td>TSI</td>
<td>公制</td>
</tr>
<tr>
<td>33.</td>
<td>百帕斯卡</td>
<td>HPA</td>
<td>公制</td>
</tr>
<tr>
<td>34.</td>
<td>兆帕斯卡</td>
<td>MPA</td>
<td>公制</td>
</tr>
</tbody>
</table>
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>说明</th>
<th>输出格式</th>
<th>类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.</td>
<td>20 °C 下毫米水柱</td>
<td>MMH2O</td>
<td>公制</td>
</tr>
<tr>
<td>38.</td>
<td>20 °C 下厘米水柱</td>
<td>CMH2O</td>
<td>公制</td>
</tr>
<tr>
<td>39.</td>
<td>20 °C 下米水柱</td>
<td>MH2O</td>
<td>公制</td>
</tr>
</tbody>
</table>

8.3 SCPI 特定命令

表 8 SCPI 一般命令

<table>
<thead>
<tr>
<th>命令或查询</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN?</td>
<td>返回标识字符串</td>
</tr>
<tr>
<td>*RST</td>
<td>重置到已知状态（默认 + psi）</td>
</tr>
<tr>
<td>*TST?</td>
<td>返回 1</td>
</tr>
<tr>
<td>*OPC</td>
<td>操作完成</td>
</tr>
<tr>
<td>*WAI</td>
<td>返回操作完成状态</td>
</tr>
<tr>
<td>*CLS</td>
<td>清除状态和错误队列</td>
</tr>
<tr>
<td>*ESE</td>
<td>启用状态事件</td>
</tr>
<tr>
<td>*ESE?</td>
<td>返回启用状态事件值</td>
</tr>
<tr>
<td>*ESR</td>
<td>事件状态寄存器</td>
</tr>
<tr>
<td>*ESR?</td>
<td>返回事件状态寄存器值</td>
</tr>
<tr>
<td>*SRE</td>
<td>服务请求启用</td>
</tr>
<tr>
<td>*SRE?</td>
<td>返回服务请求启用值</td>
</tr>
<tr>
<td>*STB?</td>
<td>返回状态字节</td>
</tr>
</tbody>
</table>

WIKA CPC8000-H 型高压力控制器操作说明书
8.4 SCPI 命令集

表 9 SCPI - WIKA 命令集

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATus</td>
<td>:OPERation</td>
<td>返回代表仪器状态的可解码整数值。数字 0：启用调零。数字 1：未达到控制设定点。数字 3：保留 0。数字 4：测量中。仪器正在进行测量。</td>
</tr>
<tr>
<td>MEASURE</td>
<td>[::PRESsure] [z]?</td>
<td>返回指定传感器（或所用传感器，如果 [z] 省略）的压力（以当前单位表示）。</td>
</tr>
<tr>
<td></td>
<td>:TEMPerature[z]?</td>
<td>返回指定传感器（或所用传感器，如果 [z] 省略）的温度（°C）。</td>
</tr>
<tr>
<td></td>
<td>:RATE[z]?</td>
<td>返回指定传感器（或所用传感器，如果 [z] 省略）的压力速率（以当前单位表示）。</td>
</tr>
<tr>
<td></td>
<td>:BAROmetric?</td>
<td>如果已安装大气压传感器，返回大气压力（以当前单位表示）。</td>
</tr>
<tr>
<td>CALIBRATION</td>
<td>[::PRESsure] [z]</td>
<td>如果传感器已校准，返回 1；如果未校准，返回 0。</td>
</tr>
<tr>
<td></td>
<td>:DATE?</td>
<td>返回存储的校准日期。</td>
</tr>
<tr>
<td></td>
<td>:DATE <i,i,i></td>
<td>设置校准日期（YYYY,MM,DD）。</td>
</tr>
<tr>
<td></td>
<td>:ZERO?</td>
<td>返回当前零点修正（单位：bar）。</td>
</tr>
<tr>
<td></td>
<td>:ZERO <n></td>
<td>设置零点，使当前测量的压力与所命令值（以当前单位表示）匹配。限于 +/-5% FS。</td>
</tr>
<tr>
<td></td>
<td>:ZERO:RUN</td>
<td>仪器排气并设置零点，使当前测量的压力为 0。</td>
</tr>
<tr>
<td></td>
<td>:ZERO:STOP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ZERO:INITiate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ZERO:INITiate?</td>
<td></td>
</tr>
</tbody>
</table>
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>[:PRESsure] [z]</td>
<td>选择要读取或修改的传感器或所用传感器（如果 [z] 省略）。</td>
</tr>
<tr>
<td>17.</td>
<td>:NAME?</td>
<td>返回传感器的准确度和量程。</td>
</tr>
<tr>
<td>18.</td>
<td>:MODE?</td>
<td>返回压力类型“ABSOLUTE”或“GAUGE”</td>
</tr>
<tr>
<td>19.</td>
<td>:MODE ABS/GAUGE</td>
<td>将压力类型设置为绝压或表压。</td>
</tr>
<tr>
<td>20.</td>
<td>:ABS?</td>
<td>返回原配置传感器类型，“1”为绝压，“0”为表压。</td>
</tr>
<tr>
<td>21.</td>
<td>:RESolution?</td>
<td>返回传感器的 FS 相对分辨率。</td>
</tr>
<tr>
<td>22.</td>
<td>[:UPPer]?</td>
<td>返回主传感器的最大量程。</td>
</tr>
<tr>
<td>23.</td>
<td>:LOWer?</td>
<td>返回主传感器的最小量程。</td>
</tr>
<tr>
<td>24.</td>
<td>[:NAME]?</td>
<td>返回代表传感器原始配置单位的字符串。</td>
</tr>
<tr>
<td>25.</td>
<td>:VALue?</td>
<td>返回传感器原始配置单位转换为当前单位的转换系数。</td>
</tr>
<tr>
<td>26.</td>
<td>[:HEIGht] <n></td>
<td>设置高差修正 [mm]。</td>
</tr>
<tr>
<td>27.</td>
<td>:HEIGht?</td>
<td>返回高差压力高度。</td>
</tr>
<tr>
<td>28.</td>
<td>:MODE?</td>
<td>返回高差修正模式 - “OFF”、“GAS”、“LIQUIT”。</td>
</tr>
<tr>
<td>29.</td>
<td>:MODE OFF/GAUGE</td>
<td>设置高差修正模式。</td>
</tr>
<tr>
<td>30.</td>
<td>:MEDIUM <n></td>
<td>设置在 20 °C 和 1bar（绝压）[kg/m3] 条件下的介质密度（或以当前单位表示的等值）。</td>
</tr>
<tr>
<td>31.</td>
<td>:MEDIUM?</td>
<td>返回介质。</td>
</tr>
<tr>
<td>32.</td>
<td>:ACTive <n></td>
<td>设置所用传感器</td>
</tr>
<tr>
<td>33.</td>
<td>:ACTive?</td>
<td>返回所用传感器</td>
</tr>
<tr>
<td>SYSTem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>:DATE <i,i,i></td>
<td>设置系统日期 (YYYY,MM,DD)。</td>
</tr>
<tr>
<td>35.</td>
<td>:DATE?</td>
<td>返回系统日期 (YYYY,MM,DD)</td>
</tr>
<tr>
<td>36.</td>
<td>:TIME <i,i,i></td>
<td>设置系统时间 (HH,MM,SS)。</td>
</tr>
<tr>
<td>37.</td>
<td>:TIME?</td>
<td>返回系统时间 (HH,MM,SS)。</td>
</tr>
<tr>
<td>38.</td>
<td>:ERRor[:NEXT]</td>
<td>返回：错误号，“描述”</td>
</tr>
<tr>
<td>39.</td>
<td>:KLOCk ON/OFF/1/0</td>
<td>锁定或解锁键盘。</td>
</tr>
<tr>
<td>40.</td>
<td>:PRESSet</td>
<td>载入默认值</td>
</tr>
<tr>
<td>41.</td>
<td>:SAVe</td>
<td>将设置保存到稳定的内存中。</td>
</tr>
</tbody>
</table>
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.</td>
<td>:VERSiOn?</td>
<td>返回 SCPI 标准。</td>
</tr>
<tr>
<td>TEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>:ELECTronic?</td>
<td>返回“OK”。</td>
</tr>
<tr>
<td>44.</td>
<td>:RELay<n>?</td>
<td>返回继电器 1-3 是否关闭的信息。</td>
</tr>
<tr>
<td>45.</td>
<td>:RELay<n> ON/OFF</td>
<td>打开或关闭继电器 1-3。</td>
</tr>
<tr>
<td>UNIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>:NAME<n>?</td>
<td>返回索引 n 的单位名称。</td>
</tr>
<tr>
<td>47.</td>
<td>:FACTOR<n>?</td>
<td>返回索引 n 与当前单位之间的转换系数。</td>
</tr>
<tr>
<td>48.</td>
<td>:PRESSure<n></td>
<td>设置压力单位。</td>
</tr>
<tr>
<td>49.</td>
<td>:PRESSure?</td>
<td>返回压力单位。</td>
</tr>
<tr>
<td>OUTPut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>:STATeON/OFF/1/0</td>
<td>ON 或 1 = 控制模式，OFF 或 0 = 测量模式</td>
</tr>
<tr>
<td>51.</td>
<td>:STATe?</td>
<td>如是测量模式，返回 0；如是控制模式，返回 1。</td>
</tr>
<tr>
<td>52.</td>
<td>:MODE MEASure/CONTrol/VENT</td>
<td>设置指示的模式。</td>
</tr>
<tr>
<td>53.</td>
<td>:MODE?</td>
<td>返回模式字符串。</td>
</tr>
<tr>
<td>54.</td>
<td>:STABile?</td>
<td>如果稳定，返回 1，否则返回 0。</td>
</tr>
<tr>
<td>55.</td>
<td>:AUTOvent ON/OFF/1/0</td>
<td>如为真，将设备置于排气模式</td>
</tr>
<tr>
<td>56.</td>
<td>:AUTOvent?</td>
<td>返回排气模式状态。</td>
</tr>
<tr>
<td>57.</td>
<td>:AUTORange ON/OFF/1/0</td>
<td>开启或关闭自动量程</td>
</tr>
<tr>
<td>58.</td>
<td>:AUTORange?</td>
<td>返回“ON”或“OFF”</td>
</tr>
<tr>
<td>[SOURce]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>:PRESSure[:LEVel][:IMMediate] [:AMPLitude] <n></td>
<td>设置设定点。</td>
</tr>
<tr>
<td>60.</td>
<td>[:AMPLitude]?</td>
<td>返回设定点。</td>
</tr>
<tr>
<td>61.</td>
<td>:SLEW <n></td>
<td>设置转换速率设定点。</td>
</tr>
<tr>
<td>62.</td>
<td>:SLEW?</td>
<td>返回转换速率设定点。</td>
</tr>
<tr>
<td>63.</td>
<td>:TOlerance <n></td>
<td>设置稳定窗口。</td>
</tr>
<tr>
<td>64.</td>
<td>:TOlerance?</td>
<td>返回稳定窗口。</td>
</tr>
<tr>
<td>CALCulate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>:LOWer<n></td>
<td>设置最小控制限值。</td>
</tr>
<tr>
<td>66.</td>
<td>:LOWer?</td>
<td>返回最小控制限值。</td>
</tr>
<tr>
<td>67.</td>
<td>:UPPer<n></td>
<td>设置最大控制限值。</td>
</tr>
</tbody>
</table>

WIKA CPC8000-H 型高压力控制器操作说明书
8. 远程操作

<table>
<thead>
<tr>
<th>项目</th>
<th>命令或查询</th>
<th>响应/功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.</td>
<td>:UPPer?</td>
<td>返回最大控制限值。</td>
</tr>
<tr>
<td></td>
<td>:SYSTem</td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>:DETECT SLOW/FAST/CANCEL</td>
<td>控制自动调准（目前未使用）。</td>
</tr>
<tr>
<td>70.</td>
<td>:DETECT?</td>
<td>返回控制自动调准的状态。</td>
</tr>
</tbody>
</table>

8.4.1 SCPI 错误消息和错误代码

设备显示所识别的命令，标题为“Remote...”。如果存在错误，则显示“Remote error...”。最多可存储并成功查询 100 个错误。

表 10 错误代码 SCPI

<table>
<thead>
<tr>
<th>错误码</th>
<th>SCPI 代码</th>
<th>返回错误字符串</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error (无错误)</td>
<td></td>
</tr>
<tr>
<td>-101</td>
<td>Undefined character (未定义字符)</td>
<td></td>
</tr>
<tr>
<td>-102</td>
<td>Syntax error (语法错误)</td>
<td></td>
</tr>
<tr>
<td>-103</td>
<td>Undefined separator (未定义分隔符)</td>
<td></td>
</tr>
<tr>
<td>-104</td>
<td>Parameter data type error (参数数据类型错误)</td>
<td></td>
</tr>
<tr>
<td>-109</td>
<td>Parameter missing (参数缺失)</td>
<td></td>
</tr>
<tr>
<td>-110</td>
<td>Undefined header (未定义标题)</td>
<td></td>
</tr>
<tr>
<td>-113</td>
<td>Undefined command (未定义命令)</td>
<td></td>
</tr>
<tr>
<td>-114</td>
<td>Parameter out of range (参数超出量程)</td>
<td></td>
</tr>
<tr>
<td>-313</td>
<td>Calibration data not found (未找到校准数据)</td>
<td></td>
</tr>
<tr>
<td>-315</td>
<td>Configuration data not found (未找到配置数据)</td>
<td></td>
</tr>
<tr>
<td>-350</td>
<td>Errorqueue overflow (错误队列过量)</td>
<td></td>
</tr>
<tr>
<td>-410</td>
<td>Query interrupted (查询中断)</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Default configuration not found (未找到默认配置)</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Calibration mode active! (校准模式启用!) Deactivate before setting C0..C3 (设置 C0..C3 前禁用)</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Sensor not available (传感器不可用)</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>DCS instance not available (DCS 实例不可用)</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>Create DCS instance failed (创建 DCS 实例失败)</td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>DCS still active (DCS 仍启用)</td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>Command currently not allowed (命令当前不允许)</td>
<td></td>
</tr>
</tbody>
</table>
9. 校准

9.1 校准环境

为获得最大的准确度，在开始校准之前，应将 CPC8000-H 置于补偿范围内的环境温度中预热至少 25 分钟。另外，仪器应放置在不会有太大振动和冲击的稳定平台上。

9.2 校准压力标准

Mensor 建议在校准该仪器时使用恰当准确的压力标准。该标准应足以满足要求，当应用 ISO “测量不确定度表示指南” (GUM) 的规定时，仪器能够满足 ISO/IEC 17025:2005 或其他适用标准所要求的准确度声明。

9.3 校准介质

对于 CPC8000-HM 液压参考压力传感器的校准，推荐且要求使用控制器中的液体。

对于 CPC8000-HC 内部气动控制传感器和大气压参考传感器的校准，要求使用气体介质。推荐的介质为干燥氮气或清洁干燥的仪器空气。

9.4 校准设置

请参考下一页的校准设置示意图（请参见图 9-1 绝压校准）。该图展示了绝压仪器和表压仪器的典型校准设置。“压力标准”通常为自重测试仪、精密活塞式平衡仪或精密压力计。“容积控制器”是指手动操作的可变容积压力测量设备。

![校准示意图](图 9-1 绝压校准)
9.校准

9.5 校准调节程序

有三种方法可以校准 CPC8000-H 的所有变送器。简单的 [1-Point Calibration]（1 点校准）可用于调节单点（通常是零点）。[2-Point Calibration]（2 点校准）功能相应扩展，可调节两个点（通常是接近零点和测量范围的点）。[Linearize]（线性化）校准通过从每个变送器量程上选取 1 至 10 个点进行校准并使压力曲线线性化。

有关所有校准屏幕的操作程序说明，请参见本手册的以下章节:

- 1 点校准 — 请参见第 9.5.1 节
- 2 点校准 — 请参见第 9.5.2 节
- 线性化校准 — 请参见第 9.5.3 节
- 高差修正 — 请参见第 7.3.5.2 节

信息！
校准 CPC8000-H 时，必须考虑对压力标准和仪器之间的海拔差（高差）进行的调整。请参见第 7.3.5.2 节以查看和调节高差修正。

9.5.1 1 点校准

在“1 Point Calibration”屏幕上，可使用单个压力点来校准内部传感器或可选气压计。此方法通常用于调节传感器的零点。按下屏幕底部的 [Primary]、[Secondary]、[Tertiary] 或 [Barometer] 选项卡，可选择要校准的传感器。

对于配有表压传感器的仪器，使用 [Vent] 按钮可排出仪器中的气体，在显示稳定压力后，按下 [New Value] 按钮打开数字键盘，输入 0（零点）。

配有绝压传感器的仪器应置于 [Measure] 模式，同时采用适当高准确度参考标准，其与 CPC8000-HM 后部的测量/控制 DUT 端口相连。应按下 [New Value] 按钮以记录根据参考标准得出的绝压读数值。
9. 校准

按下 [certificate] 按钮可输入证书编号。按下 [Date] 按钮可输入日期。按下 [Interval] 按钮可查看和更改校准间隔时间。

9.5.2 2 点校准

“2 点校准”可调节所用变送器的“零点”（低点）和“测量范围”（高点）。

按照以下步骤完成 2 点校准:

1. 按下屏幕底部其中一个可用的变送器选项卡（此处为 [Primary]、[Secondary]、[Tertiary] 或 [Barometer]），选择要校准的变送器。
2. 确保正确调节高差修正（参见第 7.3.5.2 节）。
3. 通过“设置”/ [Applications] 屏幕上受密码保护的区域，访问“2 点校准”屏幕。请参见第 7.5.1 节以查看默认密码。
4. 要校准“低点”:
 a. 向仪器的测量/控制端口供应合适的“低点”压力（请参见第 4.5 节“后面板”以查看端口位置）。
 b. 对于表压变送器，按下“2 点校准”屏幕上的 [Vent] 按钮便可得到低点压力，然后待读数稳定至零或接近零。
 c. 在值稳定时测量压力（稳定值在所选内部变送器的最小量程 20% 之内）。
 d. 压力稳定时，按下“Actual”标签中“Low Point”所在行的 [Reading] 按钮。该操作将接受读数值，将在 [Reading] 按钮原位置以绿色背景突显该值。
9. 校准

e. 按下 [New Value] 按钮，通过数字键盘输入根据校准标准得出的“真实压力”。按下数字键盘上的勾选标记，确认输入值，将在 [New Value] 按钮原位置以绿色背景突显该值。通过上述操作，完成低点校准。

5. 要校准“高点”:

a. “高点”校准操作与“低点”校准类似，但需将仪器置于 [Measure] 模式下进行校准。

b. 在“2点校准”屏幕上按下 [Measure] 按钮，使仪器处于测量模式。

c. 使用压力标准向测量/控制端口供应压力。该压力应尽量接近所选变送器的满刻度值，或者至少在满刻度值的 20% 之内。在压力达到量程接受范围后，[Too Low] 按钮会变为 [Reading] 按钮。

d. 待压力稳定后，选择 [Reading] 按钮以确认输入压力的仪器读数。实际读数会在 [Reading] 按钮原位置以绿色背景突出显示。

e. 按下 [New Value] 按钮，输入“真实压力”。该值是根据校准标准测量得出的压力。按下数字键盘上的勾选标记，确认输入值，将在 [New Value] 按钮原位置以绿色背景突显该值。通过上述操作，完成高点校准。

f. 此时 [Save] 按钮将处于激活状态，按下此按钮以将值存储在变送器中。

9.5.3 线性化

图 9-5 线性化 - 调节前校准
可随时按下 [Factory Cal] 按钮，以恢复至出厂校准设置。
10.维护、清洁和服务

10.1 维护

本仪器为免维护型。

修理只能由制造商进行。

例如，如果存在如下情况，低压控制器可能危及操作人员安全：

- 仪器上有可见损坏。
- 仪器未按指定要求工作。
- 仪器长时间存放在不当条件下。

如有任何疑问，请将低压控制器返还制造商进行修理或维护。

10.2 清洁

小心！

- 清洁前，先将仪器与压力供应正确断开，关闭仪器，然后断开仪器的电源连接。
- 使用湿布清洁仪器。
- 电气连接件切勿沾水。
- 返还前，请冲洗或清洁拆下的仪器，以避免人员接触到残余介质或将其排放到环境中。
- 拆下的仪器中的残余介质对人员、环境和设备有害。请采取充分的预防措施。

有关返还仪器的信息，请参见“12.2 返还”一节

10.3 重新校准

DKD/DAkkS 证书 - 证书：

我们建议由制造商每隔约 12 个月定期对仪器进行一次重新校准。每次工厂重新校准还包括对所有系统参数的免费全面检查，以确保参数合乎规范。如必要，会更正基本设置。
10.4 变送器位置

下图显示内部参考传感器的位置

10.4.1 CPC8000-HM 变送器拆卸/更换

松开 8 颗螺钉可拆卸前面板，进而可取放内部参考传感器。打开前面板前，必须先关闭系统。

小心！
拆卸变送器前，先将仪器与压力供应正确断开，关闭仪器，然后断开仪器的电源连接。

小心！
不允许进一步接触仪器内部。仪器内部没有用户可操作的管线或部件。除存在危险电压（线路电压），内部还有容易因静电放电而损坏的电路。另外还有多个电磁阀，在特定工作条件下运行时会变得灼热，容易造成烧伤疼痛。限制接触前面板打开后暴露出的内部区域，可避免这些危险情况。
10.维护、清洁和服务

松开将 CPC8000-HM 固定在机架上的四颗螺钉以及固定 CPC8000-HM 前面板的四颗螺钉，然后拆卸整个前面板。松开传感器侧面的 9 针 D-sub 接头。断开传感器的液压管道连接。然后，使用 3mm 内六角扳手，松开变送器基底旁将传感器固定在底座上的两颗带帽螺钉。将传感器从仪器前部取出。

要将模块或替换模块重新装回系统，可将模块放回且稳固滑入到位，使液压管路与歧管管路对接。拧紧两个带帽固定螺钉，然后连接通信/通电 D-sub 接头。

10.4.2 CPC8000-HC 变送器拆卸/更换

前面板以铰接方式安装，方便用户取放独立整装的压力变送器。要打开前面板，请先关闭系统电源，然后松开面板右边缘旁的两颗（紧固）螺钉。接着，可转动打开面板，露出内部整列排列的变送器。

如果系统未断电，打开前面板会松开联锁装置，将系统的气体压力排放到大气中。

小心！

- 不允许进一步接触仪器内部。仪器内部没有用户可操作的管线或部件。除存在危险电压（线路电压），内部还有容易因静电放电而损坏的电路。另外还有多个电磁阀，在特定工作条件下运行时会变得灼热，容易造成烧伤疼痛。限制接触前面板打开后暴露出的内部区域，可避免这些危险情况。

要拆卸系统中的变送器，转动打开前面板，将 9 针 D-sub 接头从顶部断开。然后，使用设备配套的 3/16" 内六角扳手，松开变送器基底旁的两颗带帽螺钉。两个螺钉松脱后，将变送器向前面板开口方向滑动，使其断开与歧管的连接。如果装有可选的大气压变送器，其位于最右侧插槽，用翼形螺钉固定到位。松开翼形螺钉，向上提起该传感器。高过固定销后取出。每个压力模块或气压计模块均为完全独立整装，包括压力传感器和所有校准数据。
10.维护、清洁和服务

要将模块或替换模块重新装回系统，将模块放回且稳固滑入到位，使气动管路与歧管管路对接，拧紧两个带帽固定螺钉，然后连接通信/通电 D-sub 接头。要更换可选的气压计，将替换模块滑回到位，置于固定销上，然后拧紧翼形螺钉。最后，紧固前面板，并测试系统可正常运行。

系统可以再安装两个气动压力传感器，不过加装的传感器不在本配置的计划和使用范围内。因此，不用的每个插槽均插有板件。不用的每个插槽均插有板件。不用的 9 针 D-sub 接头必须断开。

10.5 CPC8000-HC 拆卸

小心！拆卸变送器前，先将仪器与压力供应正确断开，关闭仪器，然后断开仪器的电源连接。

断开 CPC8000-HC 上的所有电子和气动连接件以及电源插头。卸下 CPC8000-HC 前部将仪器固定在机架上的四个十字槽螺钉。将仪器从机架上取下。

10.6 CPC8000-HM 拆卸

小心！CPC8000-HM 较重，其重量约为 90 kg/198 lbs。

小心！拆卸 CPC8000-HM 前，请先将仪器与压力供应正确断开，关闭仪器，然后断开仪器的电源连接。

小心！拆卸过程中，至少需要两名人员搬动该仪器。

穿着安全鞋！对 CPC8000-HM 进行操作时，务必穿着安全鞋。

断开 CPC8000-HM 上的所有电子和气动连接件以及电源插头。卸下 CPC8000-HC 前部将仪器固定在机架上的四个十字槽螺钉。至少由两名人员将该仪器从机架上取下。
11. 故障

<table>
<thead>
<tr>
<th>项目</th>
<th>问题</th>
<th>正确操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>系统已开启，但未显示任何测量值，而且整个屏幕为白色（或黑色）。</td>
<td>关闭系统。等待5秒，然后开启系统。</td>
</tr>
<tr>
<td>2.</td>
<td>屏幕为黑色，且问题1的正确操作方法无效</td>
<td>检查电源线连接是否正确，请获得授权的技术人员检查供电电压是否正确。</td>
</tr>
<tr>
<td>3.</td>
<td>屏幕为黑色，而解决上述问题2的操作方法无效</td>
<td>（从墙壁插座上）拔下设备的电源插头，然后卸下仪器上的电源线。电源线输入插口中有两个内部熔断器。检查两个熔断器的连通性。</td>
</tr>
<tr>
<td>4.</td>
<td>工作期间出现故障。</td>
<td>关闭系统。等待5秒，然后开启系统。</td>
</tr>
<tr>
<td>5.</td>
<td>控制不稳定。</td>
<td>请咨询制造商</td>
</tr>
<tr>
<td>6.</td>
<td>达不到设定点值。</td>
<td>检查供气压力值是否为要求的值，并对管线进行泄漏测试。</td>
</tr>
</tbody>
</table>

如果您需要帮助，请联系:

WIKA Alexander Wiegand SE & Co. KG
- 网址: www.wika.com
- 相关数据表：CT28.01
- 应用顾问：
 - 电话: (+49) 9372/132-9986
 - 传真: (+49) 9372/132-8767
 - 电子邮件: info@wika.de

Mensor Corporation
- 网址: www.mensor.com
- 相关数据表：CT28.01
- 应用顾问：
 - 电话: (+1) 512-396-4200
 - (+1) 800-984-4200
 - 传真: (+1) 512-396-1820
 - 电子邮件: sales@mensor.com, tech.support@mensor.com

小心！
如果使用上述方法无法消除故障，必须立即关闭低压控制器，同时确保仪器上不再显示压力和/或信号，而且务必避免不小心重启仪器。这种情况下，请联系制造商。
如果需要返还仪器，请按照“12.2 返还”一节的说明操作。
12. 拆卸、返还和处理

12.1 拆卸

警告！
拆下的仪器中的残余介质对人员、环境和设备有害。请采取充分的预防措施。

警告！
灼伤危险！
让仪器充分冷却后再进行拆卸！拆卸期间，可能存在高压热介质喷出的危险。

只有在系统完成泄压后，才断开压力测量仪器/测量组件！

12.2 返还

警告！
运输仪器时，务必遵循以下要点：
所有交付给 WIKA 的仪器必须不含任何有害物质（酸、碱、溶液等）。

返还仪器时，请使用原包装或合适的运输包装。

为避免损坏，请：
- 将仪器连同吸振材料放入包装中。
- 在包装箱的四壁均匀放置吸振材料。
- 如可能，在包装内放入干燥剂包。
- 在货件上贴上高灵敏测量仪器字样的运输标签。

随仪器附上填写完成的返还表。

返还表可通过网络获取：
www.wika.de / Service / Return

12.3 处理

不正确处理可能危及环境。

处理已使用的介质时，请遵循制造商的材料安全数据表。

请采取环保的方式处理仪器元件和包装材料，并遵守国家/地区特定的废物处理法规。
13.附录

13.1 转换系数，帕斯卡

下表列出了在将其他压力单位转换为帕斯卡或从帕斯卡转换成其他压力单位时应用作乘数的系数。

<table>
<thead>
<tr>
<th>项目</th>
<th>压力单位</th>
<th>从帕斯卡转换</th>
<th>转换成帕斯卡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PSI</td>
<td>1.450377E-04</td>
<td>6.894757E+03</td>
</tr>
<tr>
<td>2.</td>
<td>inHg 0 °C</td>
<td>2.952997E-04</td>
<td>3.386390E+03</td>
</tr>
<tr>
<td>3.</td>
<td>inHg 60 °F</td>
<td>2.961339E-04</td>
<td>3.376850E+03</td>
</tr>
<tr>
<td>4.</td>
<td>inH2O 4 °C</td>
<td>4.014741E-03</td>
<td>2.490820E+02</td>
</tr>
<tr>
<td>5.</td>
<td>inH2O 20 °C</td>
<td>4.021862E-03</td>
<td>2.486410E+02</td>
</tr>
<tr>
<td>6.</td>
<td>inH2O 60 °F</td>
<td>4.018645E-03</td>
<td>2.488400E+02</td>
</tr>
<tr>
<td>7.</td>
<td>ftH2O 4 °C</td>
<td>3.345622E-04</td>
<td>2.988980E+03</td>
</tr>
<tr>
<td>8.</td>
<td>ftH2O 20 °C</td>
<td>3.351551E-04</td>
<td>2.983692E+03</td>
</tr>
<tr>
<td>9.</td>
<td>ftH2O 60 °F</td>
<td>3.348871E-04</td>
<td>2.986080E+03</td>
</tr>
<tr>
<td>10.</td>
<td>mTorr</td>
<td>7.500636E+00</td>
<td>1.333220E-01</td>
</tr>
<tr>
<td>11.</td>
<td>inSW 0 °C 3.5% sal</td>
<td>3.904899E-03</td>
<td>2.560885E+02</td>
</tr>
<tr>
<td>12.</td>
<td>ftSW 0 °C 3.5% sal</td>
<td>3.254082E-04</td>
<td>3.073062E+03</td>
</tr>
<tr>
<td>13.</td>
<td>ATM</td>
<td>9.869230E-06</td>
<td>1.013250E+05</td>
</tr>
<tr>
<td>14.</td>
<td>Bar</td>
<td>1.00000E-05</td>
<td>1.00000E+05</td>
</tr>
<tr>
<td>15.</td>
<td>mBar</td>
<td>1.00000E-02</td>
<td>1.00000E+02</td>
</tr>
<tr>
<td>16.</td>
<td>mmH2O 4 °C</td>
<td>1.019744E-01</td>
<td>9.806378E+00</td>
</tr>
<tr>
<td>17.</td>
<td>cmH2O 4 °C</td>
<td>1.019744E-02</td>
<td>9.806378E+01</td>
</tr>
<tr>
<td>18.</td>
<td>MH2O 4 °C</td>
<td>1.019744E-04</td>
<td>9.806378E+03</td>
</tr>
<tr>
<td>19.</td>
<td>mmHg 0 °C</td>
<td>7.500636E-03</td>
<td>1.333220E+02</td>
</tr>
<tr>
<td>20.</td>
<td>cmHg 0 °C</td>
<td>7.500636E-04</td>
<td>1.333220E+03</td>
</tr>
<tr>
<td>21.</td>
<td>Torr</td>
<td>7.500636E-03</td>
<td>1.333220E+02</td>
</tr>
<tr>
<td>22.</td>
<td>kPa</td>
<td>1.00000E-03</td>
<td>1.00000E+03</td>
</tr>
<tr>
<td>23.</td>
<td>PA</td>
<td>1.00000E+00</td>
<td>1.00000E+00</td>
</tr>
<tr>
<td>24.</td>
<td>Dy/cm²</td>
<td>1.00000E+01</td>
<td>1.00000E-01</td>
</tr>
<tr>
<td>25.</td>
<td>gm/cm²</td>
<td>1.019716E-02</td>
<td>9.806647E+01</td>
</tr>
<tr>
<td>26.</td>
<td>kg/cm²</td>
<td>1.019716E-05</td>
<td>9.806647E+04</td>
</tr>
<tr>
<td>27.</td>
<td>MSW 0 °C 3.5% sal</td>
<td>9.918444E-05</td>
<td>1.008222E+04</td>
</tr>
<tr>
<td>28.</td>
<td>OSI</td>
<td>2.320603E-03</td>
<td>4.309223E+02</td>
</tr>
<tr>
<td>29.</td>
<td>PSF</td>
<td>2.088543E-02</td>
<td>4.788025E+01</td>
</tr>
<tr>
<td>30.</td>
<td>TSF</td>
<td>1.044271E-05</td>
<td>9.576052E+04</td>
</tr>
</tbody>
</table>
附录

<table>
<thead>
<tr>
<th>项目</th>
<th>压力单位</th>
<th>从帕斯卡转换</th>
<th>转换成帕斯卡</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.</td>
<td>µHg 0 °C</td>
<td>7.500636E+00</td>
<td>1.333220E-01</td>
</tr>
<tr>
<td>33.</td>
<td>TSI</td>
<td>7.251885E-08</td>
<td>1.378951E+07</td>
</tr>
<tr>
<td>35.</td>
<td>hPa</td>
<td>1.00000E-02</td>
<td>1.00000E+02</td>
</tr>
<tr>
<td>36.</td>
<td>MPa</td>
<td>1.00000E-06</td>
<td>1.00000E+06</td>
</tr>
<tr>
<td>37.</td>
<td>mmH2O 20°C</td>
<td>1.021553E-01</td>
<td>9.789017E+00</td>
</tr>
<tr>
<td>38.</td>
<td>cmH2O 20°C</td>
<td>1.021553E-02</td>
<td>9.789017E+01</td>
</tr>
<tr>
<td>39.</td>
<td>MH2O 20°C</td>
<td>1.021553E-04</td>
<td>9.789017E+03</td>
</tr>
</tbody>
</table>