Precision Pressure Transducer
Basic Version, Model CPT6020

Precision Pressure Transducer, Model CPT6020

WIKAI
Smart in sensing
© 12/2017, Mensor, LP. All rights reserved.
Mensor is a registered trademark of Mensor, LP.
All other brand and product names are trademarks or registered trademarks of their respective companies.

Prior to starting any work, read the operating instructions!
Keep for later use!
Contents

1. **General Information**
 1.1 Warranty .. 5
 1.2 Radio Frequency Emission Notices
 1.2.1 FCC Emission Notice 6
 1.2.2 CE Emission Notice 6
 1.3 Software License Agreement.
 1.4 Mensor Service Plus
 1.4.1 After the Warranty 6
 1.4.2 Calibration Services 6
 1.4.3 Certifications and Accreditations 6

2. **Short Overview**
 2.1 Features. .. 7
 2.2 Scope of Delivery .. 7

3. **Safety**
 3.1 Explanation of Symbols 8
 3.2 Intended Use ... 8
 3.3 Improper Use ... 8
 3.4 Responsibility of the Operator 8
 3.5 Personnel Qualification.
 3.6 Personal Protective Equipment 10
 3.7 Labeling, Safety Marks
 3.7.1 Product Label .. 10
 3.7.2 Symbols .. 11
 3.8 Warnings and Cautions

4. **Transport, Packaging and Storage**
 4.1 Transport .. 12
 4.2 Packaging and storage 12

5. **Installation**
 5.1 Mounting .. 13
 5.1.1 Pressure Connections
 5.1.2 Safety Relief Valves
 5.1.3 Pressure Media
 5.1.4 Electrical Connections

6. **Operation**
 6.1 General Operation ... 16
 6.1.1 Command and Query Format
 6.1.1.1 RS-485 Command and Query Format 16
 6.1.1.2 USB and RS-232 Command and Query Format 16
 6.1.1.3 Command Error Detection and Debugging 16
 6.1.2 CPT6020 Commands and Queries.
 6.1.2.1 Default Command 20
 6.1.2.2 Setting the Command Set 20
 6.1.2.3 Setting Pressure Units 21
 6.1.2.4 Customer Units 21
 6.1.2.5 Calibration Adjustments 21
 6.1.2.6 Output String Setting 22
 6.1.3 MENSOR Legacy Command Set
 6.1.4 Honeywell PPT Command Set

WIKA operating instructions process pressure transducer, model CPT6020

Contents

7. Maintenance and Recalibration 28
 7.1 Maintenance 28
 7.1.1 Beyond the Warranty 28
 7.2 Recalibration 28
 7.2.1 Calibration Services by Mensor or WIKA worldwide 28
 7.2.2 Environment 29
 7.2.3 Pressure Standards 29
 7.2.4 Media 29
 7.2.5 Setup 29
 7.2.6 Calibration & Communication Software 30

8. Dismounting, Return and Disposal 31
 8.1 Dismounting 31
 8.2 Return 32
 8.3 Disposal 32

9. Specifications 33
 9.1 Measurement Specification 33
 9.2 General Specification 34
 9.3 Approvals and Certificates 34
 9.4 Dimensions in mm (in) 35

10. Accessories 36
 10.1 Fittings & Gaskets 36
 10.2 Accessories 36
1. General Information

- The CPT6020 Precision Pressure Transducer described in the operating instructions has been designed and manufactured using state-of-the-art technology. All components are subject to stringent quality and environmental criteria during production. Our management systems are certified to ISO 9001 and ISO 14001.

- These operating instructions contain important information on handling the instrument. Working safely requires that all safety instructions and work instructions are observed.

- Observe the relevant local accident prevention regulations and general safety regulations for the instrument's operating range.

- The operating instructions are part of the instrument and must be kept in the immediate vicinity of the instrument and readily accessible to skilled personnel at any time. Pass the operating instructions onto the next operator or owner of the instrument.

- Skilled personnel must have carefully read and understood the operating instructions prior to beginning any work.

- The general terms and conditions contained in the sales documentation shall apply.

- Subject to technical modifications.

- Factory calibrations are carried out in accordance with international standards.

Further information:

Mensor Corporation
- Address: 201 Barnes Dr., San Marcos, TX 78666
- Internet address: www.mensor.com
- Relevant data sheet: CT 25.12
- Application consultant: Tel.: (+1) 512-396-4200
 (+1) 800-984-4200 (USA only)
 Fax: (+1) 512-396-1820
 E-Mail: sales@mensor.com
 techservices@mensor.com

Importer for Europe

WIKA Alexander Wiengand SE & Co. KG
- Address: Alexander Wiegand-Straße
 63911 Klingenberg, Germany
- Internet address: www.wika.de / www.wika.com
- Relevant data sheet: CT 25.12
- Application consultant: Tel.: (+49) 9372/132-5015
 Fax: (+49) 9372/132-8767
 E-Mail: CTsales@wika.com

1.1 Warranty

All products manufactured by Mensor are warranted to be free of defects in workmanship and materials for a period of two years from the date of shipment. No other express warranty is given, and no affirmation of Seller, by words or actions, shall constitute a warranty. SELLER DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSES WHATSOEVER. If any defect in workmanship or material should develop under conditions of normal use and service within the warranty period, repairs will be made at no charge to the original purchaser, upon delivery of the product(s) to the factory, shipping charges prepaid. If inspection by Mensor or its authorized representative reveals that the product was damaged...
by accident, alteration, misuse, abuse, faulty installation or other causes beyond the control of Mensor, this warranty does not apply. The judgment of Mensor will be final as to all matters concerning condition of the product, the cause and nature of a defect, and the necessity or manner of repair. Service, repairs or disassembly of the product in any manner, performed without specific factory permission, voids this warranty.

MENSOR MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Mensor shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

1.2 Radio Frequency Emission Notices

USE SHIELDED CABLES TO CONNECT EXTERNAL DEVICES TO THIS INSTRUMENT TO MINIMIZE RF RADIATION

1.2.1 FCC Emission Notice
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

1.2.2 CE Emission Notice
This equipment is of the emission class B, intended for operation in industrial, residential or commercial environments.

1.3 Software License Agreement
This product contains intellectual property, i.e. software programs, that are licensed for use by the end user/customer (hereinafter “end user”). This is not a sale of such intellectual property.
The end user shall not copy, disassemble or reverse compile the software program.

The software programs are provided to the end user “as is” without warranty of any kind, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. The entire risk of the quality and performance of the software program is with the end user.

Mensor and its suppliers shall not be held to any liability for any damages suffered or incurred by the end user (including, but not limited to, general, special, consequential or incidental damages including damages for loss of business profits, business interruption, loss of business information and the like), arising from or in connection with the delivery, use or performance of the software program.

1.4 Mensor Service Plus
1.4.1 After the Warranty
Mensor’s concern with the performance of this instrument is not limited to the warranty period. We provide complete repair, calibration and certification services after the warranty for a nominal fee.

1.4.2 Calibration Services
In addition to servicing our own products Mensor can perform a complete pressure calibration service, up to 30,000 psi, for all of your pressure instruments. This service includes an accredited calibration.

1.4.3 Certifications and Accreditations
2. Short Overview

The CPT6020 pressure transducer is a high accuracy digital output pressure transducer and is available in gauge, absolute and bidirectional pressure ranges with full scale pressure ranges as low as 10° H₂O to as high as 15,015 psia.

![Image of CPT6020 pressure transducer]

Figure 2.1

2.1 Features

Here is a short list of significant features designed into the CPT6020:

- Accuracy to 0.02% FS
- Wide voltage power input range
- IP67 rating for harsh environments
- All 316L SS wetted path on ranges >5 psi
- Command emulation for digital communications
- User selectable units
- Compact size

2.2 Scope of Delivery

- Precision Pressure Transducer model CPT6020
- RS-232/RS-485: Power cord with 1.5 m (5 ft) length
- Operating instruction
- Factory calibration certificate
- Selected fitting
3. Safety

3.1 Explanation of Symbols

DANGER!
... indicates a directly dangerous situation resulting in serious injury or death, if not avoided.

WARNING!
... indicates a potentially dangerous situation that can result in serious injury or death, if not avoided.

CAUTION!
... indicates a potentially dangerous situation that can result in light injuries or damage to property or the environment, if not avoided.

DANGER!
... identifies hazards caused by electrical power. Should the safety instructions not be observed, there is a risk of serious or fatal injury.

WARNING!
... indicates a potentially dangerous situation that can result in burns, caused by hot surfaces or liquids, if not avoided.

Information
... points out useful tips, recommendations and information for efficient and trouble-free operation.

3.2 Intended Use

The CPT6020 pressure transducer is designed to measure pressure with extreme accuracy as stand-alone devices or as incorporated in OEM type applications. It is characterized over a wide temperature range and is designed to be used in environments that are much more harsh than tolerable by previous generations of Mensor pressure transducers.

3.3 Improper Use

WARNING!
Injuries through improper use
Improper use of the instrument can lead to hazardous situations and injuries.

- Do not use the transducer within hazardous areas
- Do not use the transducer with oxygen as a medium
- Do not attempt to disassemble the transducer

Any use beyond or different than the intended use is considered improper use.

3.4 Responsibility of the Operator

The instrument is used in the industrial sector. The operator is therefore responsible for legal obligations regarding safety at work.

The safety instructions within these operating instructions, as well as the safety, accident prevention and environmental protection regulations for the application area must be maintained.
The operator is obliged to maintain the product label in a legible condition.

The operator must ensure that:

- Mechanical vibration, mechanical shock are minimized
- The transducer is installed in areas without soot, vapor, dust and corrosive gases
- The transducer is not used in hazardous environments, flammable atmospheres
- The operating personnel are regularly instructed in all topics regarding work safety, first aid and environmental protection and know the operating instructions and in particular, the safety instructions contained therein
- The transducer is suitable for the particular application in accordance with its intended use
- Personal protective equipment is available

3.5 Personnel Qualification

WARNING!
Risk of injury should qualification be insufficient
Improper handling can result in considerable injury and damage to equipment.

- The activities described in these operating instructions may only be carried out by skilled personnel who have the qualifications described below.

Skilled personnel
Skilled personnel, authorized by the operator, are understood to be personnel who, based on their technical training, knowledge of measurement and control technology and on their experience and knowledge of country-specific regulations, current standards and directives, are capable of carrying out the work described and independently recognizing potential hazards.

Operating personnel
The personnel trained by the operator are understood to be personnel who, based on their education, knowledge and experience, are capable of carrying out the work described and independently recognizing potential hazards.

Special knowledge for working with instruments for hazardous areas:
The skilled (electrical) personnel must have knowledge of ignition protection types, regulations and provisions for equipment in hazardous areas.
Special operating conditions require further appropriate knowledge, e.g. of aggressive media.
3.6 Personal Protective Equipment
The personal protective equipment is designed to protect the skilled personnel from hazards that could impair their safety or health during work. When carrying out the various tasks on and with the instrument, the skilled personnel must wear personal protective equipment.

Follow the instructions displayed in the work area regarding personal protective equipment!

The requisite personal protective equipment must be provided by the operating company.

- **Wear safety goggles!**
 Protect eyes from flying particles and liquid splashes.

- **Wear a protective helmet!**
 Protects the head from falling objects.

- **Wear safety shoes!**
 Protect feet from falling objects or objects lying around, as well as against toxic or hazardous liquids and aggressive media.

3.7 Labeling, Safety Marks

3.7.1 Product Label

![Product Label Diagram]

<table>
<thead>
<tr>
<th>1</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Range</td>
</tr>
<tr>
<td>3</td>
<td>Accuracy</td>
</tr>
<tr>
<td>4</td>
<td>Serial Number</td>
</tr>
<tr>
<td>5</td>
<td>Communications</td>
</tr>
<tr>
<td>6</td>
<td>Power Requirements</td>
</tr>
<tr>
<td>7</td>
<td>Symbols</td>
</tr>
<tr>
<td>8</td>
<td>Date of Manufacture</td>
</tr>
<tr>
<td>9</td>
<td>Origin</td>
</tr>
</tbody>
</table>
3.7.2 Symbols

⚠️️ Before mounting and commissioning the instrument, ensure you read the operating instructions!

CE, Communauté Européenne
Instruments bearing this mark comply with the relevant European directives.

UKCA, UK Conformity Assessed
Instruments bearing this mark indicates conformity with the applicable requirements for products sold within Great Britain.

This marking on the instruments indicates that they must not be disposed of in domestic waste. The disposal is carried out by return to the manufacturer or by the corresponding municipal authorities (see EU directive 2012/19/ EU).

3.8 Warnings and Cautions

WARNING!
HIGH PRESSURE! High pressure gases are potentially hazardous. Energy stored in these gases and liquids can be released suddenly and with extreme force. High pressure systems should be assembled and operated only by personnel who have been trained in proper safety practices.

WARNING!
NOT EXPLOSION PROOF! Installation of this instrument in an area requiring devices rated as intrinsically safe is not recommended.

WARNING!
POSSIBLE INJURY! The tubing, valves, and other apparatus attached to the gauge must be adequate for the maximum pressure which will be applied, otherwise physical injury to the operator or bystanders is possible.

CAUTION
USE THE PROPER PRESSURE MEDIUM! Only use media compatible with materials of construction as specified. This transducer is not designed for oxygen use.

CAUTION
As with most sensitive electronic equipment, switch the power switch off before connecting or disconnecting to a power source to prevent data loss. Do not position the equipment so that it is difficult to disconnect the AC power cord.

WARNING!
Detachable main power supply cord with inadequate ratings should not be used. See Section 9.2 Specifications for power ratings.

Additional Warning and Caution notices are found throughout this manual.
4. Transport, Packaging and Storage

4.1 Transport
Check the CPT6020 for any damage that may have been caused by transport. Obvious damage must be reported immediately.

CAUTION!
Damage through improper transport
- While unlikely, with improper transport, damage can occur. When unloading packed goods upon delivery as well as during internal transport, proceed carefully and observe the symbols on the packaging.
- If the instrument is transported from a cold into a warm environment, the formation of condensation may result in instrument malfunction. Before putting it back into operation, wait for the instrument temperature and the room temperature to equalize.

4.2 Packaging and Storage
Permissible conditions at the place of storage
- Storage Temperature: -40 ... 85˚C
- Humidity: 5 ... 95% relative humidity (no condensation)

Avoid exposure to the following factors:
- Direct sunlight or proximity to hot objects
- Mechanical vibration, excessive mechanical shock
- Soot, vapor, dust and corrosive gases
- Hazardous environments, flammable atmospheres
Installation

5. Installation

Personnel: Skilled electrical personnel

WARNING!
READ THESE INSTRUCTIONS BEFORE INSTALLATION!

Only use original parts (see Chapter 10 “Accessories”).

WARNING!
Physical injuries and damage to property and the environment caused by hazardous media
Upon contact with hazardous media (e.g. oxygen, acetylene, flammable or toxic substances), harmful media (e.g. corrosive, toxic, carcinogenic, radioactive), and also with refrigeration plants and compressors, there is a danger of physical injuries and damage to property and the environment. Should a failure occur, aggressive media with extremely high temperature and under high pressure or vacuum may be present at the instrument.

▶ For these media, in addition to all standard regulations, the appropriate existing codes or regulations must also be followed.

▶ Wear the requisite protective equipment (see Chapter 3.6 “Personal Protective Equipment”).

CAUTION
Damage to the Instrument
When working on open electrical circuits (printed circuit boards) there is a risk of damaging sensitive electronic components through electrostatic discharge.

▶ The correct use of grounded working surfaces and personal armbands is required.

5.1 Mounting
The transducer may be mounted via its process connection or with any ring clamps along its body. Having the sensor oriented in a position other than vertical (with the port down) might cause a slight zero shift than can be removed by re-zeroing the transducer.

5.1.1 Pressure Connections
The CPT6020 has a JIC4 type female connection. When installing a mating connector, do not torque the connector with more than 13 ft-lbs or galling might occur. The transducer is supplied with a crush washer that can be used to further eliminate leaks.

5.1.2 Safety Relief Valves
Mensor recommends that an appropriately sized relief valve be placed in line with the pressure port of the transducer.

5.1.3 Pressure Media
A media comparable with the wetted parts of the transducer must be used.

CAUTION
USE THE PROPER PRESSURE MEDIUM! Only use media compatible with materials of construction as specified. This transducer is not designed for oxygen use.
5.1.4 Electrical Connections

Note: RS-232 and RS-485 Version. Power supply should be 9 to 18 VDC (12 VDC nominal).

The equipment is required to be powered by an approved power supply with an output of DC 9 – 18 V, 0.34W. The power supply must meet the requirements of IEC 61010-1 clause 9.4 without modification.

Alternatively for North America: The supply connection can also be done to "class 2 circuits" or "class 2 power supplies" according to CEC (Canadian Electrical Code) or NEC (National Electrical Code).

The pinouts on the six pin connector and RS-232 and RS-485 cable connections are:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Pigtail Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+9-18V</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>RS-485 TX-</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>RS-485 RX-</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>RS-485 RX+ or RS-232 RX</td>
<td>Black</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>Gray</td>
</tr>
<tr>
<td>6</td>
<td>RS-485 TX+ or RS-232 TX</td>
<td>Pink</td>
</tr>
</tbody>
</table>

![RS-232 and RS-485 External Connector Pinouts](image)

Figure 5.1.4A COM Connection Pin-out and RS-232 / RS-485 cable connections
USB Version External Connector and Cable

Note: USB version power supply is directly from host USB port. (3.0 to 5.25 VDC)

Figure 5.1.4B USB
6. Operation

6.1 General Operation
The CPT6020 transducer can be ordered with either a, USB, RS-232, or RS-485 full duplex output. The communications protocol is defaulted to 57600,N,8,1. The baud rate can be changed via remote commands. Connector pinouts and USB, RS-232, and RS 485 cable connections are shown in Figure Figure 5.1.4. The transducer has multiple command sets with which it can communicate with the host. These are set through the CMD_SET command.

6.1.1 Command and Query Format
Commands must be sent in ASCII format and terminated with a carriage return (<CR>), optionally followed by a linefeed (<LF>). Commands are not case sensitive. Query strings are terminated with a “?” prior to the termination character(s).

6.1.1.1 RS-485 Command and Query Format
On RS-485 versions of the CPT6020, the commands must be preceded by a “#”, an address or a “*”. In RS-485 the ADDRESS command sets the address in ranges from “0” to “9” and “A” to “Z”. The global address character is the “*”. When data is required for a command, a space (only) should delimit command and data fields.

6.1.1.2 USB and RS-232 Command and Query Format
On USB and RS-232 versions of the CPT6020, the “#” or address character is not necessary to precede the command for the Sensor command set. But, the Mensor Legacy command set still requires a proceeding “#” and address character. With the default sensor command set in USB and RS-232, the start character and address character are not required.

6.1.1.3 Command Error Detection and Debugging
The CPT6020 has built in responses to correct and incorrect data. The responses can be used to help debug the software. In the Sensor command set, the device will return “Ready” in response to a valid data command. If the device is in the Mensor Legacy command set, an “R” will be returned in response to valid data. If the data is determined to be invalid, the Sensor command set will return “Invalid Data”. The Mensor Legacy command set will still return an “R” character when invalid data is sent. This is a limitation of the Mensor Legacy command set. The Sensor command set will return “Unknown command” if the command is not found, while the Mensor Legacy command set will ignore it and not respond. This paragraph is summarized below in the following table:

<table>
<thead>
<tr>
<th>Mensor Legacy Command Set</th>
<th>Sensor Default Command Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Return Value</td>
</tr>
<tr>
<td>Valid data command</td>
<td>“R”</td>
</tr>
<tr>
<td>Invalid data command</td>
<td>“R”</td>
</tr>
<tr>
<td>Invalid command</td>
<td>Nothing</td>
</tr>
<tr>
<td>Query Customer password protected command</td>
<td>“User Password Needed”</td>
</tr>
</tbody>
</table>

Table 6.1.1.9 Command set returns for given cases

Also, it is important to note that when sent data is determined to be valid, the value will be stored in RAM. Only after the SAVE command is sent is the data saved permanently. This applies to all command sets.
6.1.2 CPT6020 Commands and Queries

Commands with complex outputs are explained in tables following the command set.

The following convention is used for the following command set tables:

- n – 1 placeholder for digits and decimal point
- C – 1 character placeholder for alpha character A-Z
- <cr> - carriage return – ASCII 13
- <lf> - line feed – ASCII 10
- ± - 1 place holder for a + or – sign, or blank which implies +
- ¬<sp> - 1 place holder for a space
- X – address placeholder or '*' for universal queries to be sent to all instruments
- Y(1,2,3…) – strings as defined in description
- <yy,mm,dd> - Last two digits of year, month, day.

All commands, queries, and responses will be terminated with a <cr><lf>.

All commands that are password protected are designated with “(Password Protected)” in the Query column below.

<table>
<thead>
<tr>
<th>Query</th>
<th>Command</th>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS?</td>
<td>ADDRESS<sp><C> (RS-485 only)</td>
<td>C</td>
<td>Transducer address 0-9, A-Z</td>
</tr>
<tr>
<td>*IDN?/ID?</td>
<td>N/A</td>
<td></td>
<td>Manufacturer, Model, SN, SW Version</td>
</tr>
<tr>
<td>N/A</td>
<td>SAVE</td>
<td></td>
<td>Saves Data to EEPROM</td>
</tr>
<tr>
<td>TYPE?</td>
<td>N/A</td>
<td>C</td>
<td>Pressure type - 1 char</td>
</tr>
<tr>
<td>FILTER?</td>
<td>FILTER<sp><n></td>
<td>n</td>
<td>Filter percentage 1 to 99</td>
</tr>
<tr>
<td>WINDOW?</td>
<td>WINDOW<sp><nn></td>
<td>n</td>
<td>Set 0 ... 99 to correspond to a filter window of 0 ... 0.099%FS</td>
</tr>
<tr>
<td>BAUD?</td>
<td>BAUD<sp><n></td>
<td>n</td>
<td>Baud Rate - 9600, 19200, 57600, 115200</td>
</tr>
<tr>
<td>N/A</td>
<td>CERR</td>
<td></td>
<td>Clears Error stack</td>
</tr>
<tr>
<td>N/A</td>
<td>DEFAULT</td>
<td></td>
<td>Defaults parameters per Table 6.1.2.1</td>
</tr>
<tr>
<td>CMD_SET?</td>
<td>CMD_SET<sp><n></td>
<td>n</td>
<td>Selects command set per Table 6.1.2.2 (This command is included in all command sets.)</td>
</tr>
<tr>
<td>N/A</td>
<td>PWD_CHANGE<sp><n,n></td>
<td>nnnn,nnnn</td>
<td>Change password <n,n> = <old,new></td>
</tr>
<tr>
<td>N/A</td>
<td>PWD<sp><n></td>
<td>nnnn</td>
<td>Send password</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESS?</td>
</tr>
</tbody>
</table>
Operation

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE_MIN?</td>
<td>Minimum range in current units.</td>
</tr>
<tr>
<td>RANGE_MAX?</td>
<td>Maximum range in current units.</td>
</tr>
<tr>
<td>UNIT_INDEX?</td>
<td>Mensor unit index: 1-39 or 99 for CUST_UNIT. See Table 6.1.2.3</td>
</tr>
<tr>
<td>UNIT?</td>
<td>Unit text 10 char - mmHg, psi, kPa...</td>
</tr>
<tr>
<td>CUST_UNIT?</td>
<td>Sets custom unit multiplication (xx/psi). See Section 6.1.2.4</td>
</tr>
</tbody>
</table>

Calibration Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL_DATE?</td>
<td>Calibration date (Password Protected)</td>
</tr>
<tr>
<td>SPAN?</td>
<td>Customer span multiplier - 0.99 to 1.01. See Section 6.1.2.5</td>
</tr>
<tr>
<td>ZERO?</td>
<td>Customer zero adder. See Section 6.1.2.5</td>
</tr>
<tr>
<td>TARE?</td>
<td>Turns tare on/off - 1/0</td>
</tr>
</tbody>
</table>

Temperature Related Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP?</td>
<td>Temperature in deg. C.</td>
</tr>
</tbody>
</table>

Output Control Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE_RATE?</td>
<td>The frequency of continuous output mode in Hz. Valid values range from 100 Hz to 2 Hz.</td>
</tr>
<tr>
<td>OUTPUT_MODE?</td>
<td>Controls output mode 0-Query Mode 1 - Continuous output after every conversion (baud rate ≥ 57600) 2 - Continuous output specified rate by UPDATE_RATE (baud rate ≥ 57600) 3 - Burst Mode</td>
</tr>
<tr>
<td>OUTPUT_MASK?</td>
<td>Configures output for PRESS? – see 6.1.2.6</td>
</tr>
<tr>
<td>BURST_MASK?</td>
<td>Configures output for Burst Mode</td>
</tr>
</tbody>
</table>

Table 6.1.2 – Sensor Command Set
Operation

Password Protection
In the Sensor Command Set, data that affects calibration is protected by a user settable 4 character password (designated as "Password Protected"). The default password is "0000". This is changed using the PWD_CHANGE command. It should be changed once the user receives the device. The factory password will override the user's password in the case that the user loses their password.

Filter & Window
The filter is a percentage of the previous reading averaged with the current reading - as long as the current reading is within the window of the previous reading. The window is set as a %FS of the transducer's range. If the current reading is outside of the window from the previous reading, the filter is unused and the current reading is displayed without manipulation. This scheme allows the user to tune the transducer's response as they like. It also allows the transducer to respond to rapid pressure changes without having to change the filter. The default values are 0.02% FS for the window and a filter of 90%.
6.1.2.1 Default Command
DEFAULT - This will default the following parameters to the shown settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>90</td>
</tr>
<tr>
<td>Window</td>
<td>20</td>
</tr>
<tr>
<td>Baud</td>
<td>57600</td>
</tr>
<tr>
<td>CMD_SET</td>
<td>0</td>
</tr>
<tr>
<td>CUST_UNIT</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6.1.2.1 - Default Settings

6.1.2.2 Setting the Command Set
CMD_SET - This will set the transducer to communicate using different command sets:

<table>
<thead>
<tr>
<th>Command Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sensor Default Command Set</td>
</tr>
<tr>
<td>1</td>
<td>Mensor Legacy</td>
</tr>
<tr>
<td>3</td>
<td>Honeywell PTT/PPT2</td>
</tr>
</tbody>
</table>

Table 6.1.2.2 – Command Set List
Operation

6.1.2.3 Setting Pressure Units

UNIT_INDEX - This command sets the output units per the following table:

<table>
<thead>
<tr>
<th>Unit Index</th>
<th>Units</th>
<th>Unit Index</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>psi</td>
<td>21</td>
<td>Torr</td>
</tr>
<tr>
<td>2</td>
<td>inHg 0C</td>
<td>22</td>
<td>kPa</td>
</tr>
<tr>
<td>3</td>
<td>inHg 60F</td>
<td>23</td>
<td>Pa</td>
</tr>
<tr>
<td>4</td>
<td>inH2O 4C</td>
<td>24</td>
<td>dy/cm2</td>
</tr>
<tr>
<td>5</td>
<td>inH2O 20C</td>
<td>25</td>
<td>g/cm2</td>
</tr>
<tr>
<td>6</td>
<td>inH2O 60F</td>
<td>26</td>
<td>kg/cm2</td>
</tr>
<tr>
<td>7</td>
<td>ftH2O 4C</td>
<td>27</td>
<td>MSW 0C</td>
</tr>
<tr>
<td>8</td>
<td>ftH2O 20C</td>
<td>28</td>
<td>osi</td>
</tr>
<tr>
<td>9</td>
<td>ftH2O 60F</td>
<td>29</td>
<td>psf</td>
</tr>
<tr>
<td>10</td>
<td>mT orr</td>
<td>30</td>
<td>tsf</td>
</tr>
<tr>
<td>11</td>
<td>inSW 0C</td>
<td>31</td>
<td>Not Used</td>
</tr>
<tr>
<td>12</td>
<td>ftSW 0C</td>
<td>32</td>
<td>uHg 0C</td>
</tr>
<tr>
<td>13</td>
<td>atm</td>
<td>33</td>
<td>tsi</td>
</tr>
<tr>
<td>14</td>
<td>bar</td>
<td>34</td>
<td>mHg 0C</td>
</tr>
<tr>
<td>15</td>
<td>mbar</td>
<td>35</td>
<td>hPa</td>
</tr>
<tr>
<td>16</td>
<td>mmH2O 4C</td>
<td>36</td>
<td>Mpa</td>
</tr>
<tr>
<td>17</td>
<td>cmH2O 4C</td>
<td>37</td>
<td>mmH2O 20C</td>
</tr>
<tr>
<td>18</td>
<td>Mh2O 4C</td>
<td>38</td>
<td>cmH2O 20C</td>
</tr>
<tr>
<td>19</td>
<td>mmHg 0C</td>
<td>39</td>
<td>mH2O 20C</td>
</tr>
<tr>
<td>20</td>
<td>cmHg 0C</td>
<td>99</td>
<td>CUST_UNIT</td>
</tr>
</tbody>
</table>

Table 6.1.2.3 - Available Unit Codes and Units

6.1.2.4 Customer Units

The CUST_UNIT multiplier in conjunction with UNIT_INDEX 99 allows the user to set their own units. The CUST_UNIT is a multiplier times psi to achieve the customer's unit value.

6.1.2.5 Calibration Adjustments

SPAN & ZERO - These are calibration multipliers and offset respectively. The zero is an offset applied to all output pressure values. The span is a multiplier times all pressure output values..
6.1.2.6 Output String Setting
PRESS? & OUTPUT_MASK - PRESS? is a programmable output query that returns an ASCII string based on the selections set by the OUTPUT_MASK variable. The selected parameters will populate the output string with commas separating the variables in the order in which they appear in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Weight</th>
<th>Format</th>
<th>Max Length (plus 1 comma between fields)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Pressure in current units</td>
<td>Fixed</td>
<td>+n.nnnnE+nn</td>
<td>14</td>
</tr>
<tr>
<td>Units</td>
<td>Unit Description</td>
<td>1</td>
<td>CCCCCCCCCC</td>
<td>10</td>
</tr>
<tr>
<td>Stable</td>
<td>0/1 – unstable/stable</td>
<td>16</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>Error</td>
<td>0/1 – no errors, error(s) in stack</td>
<td>32</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>Checksum</td>
<td>Checksum of output string</td>
<td>64</td>
<td>n</td>
<td>2</td>
</tr>
<tr>
<td>Address 1)</td>
<td>Address added to all outputs</td>
<td>128</td>
<td>n</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 6.1.2.6 - Query Mode Mask Description

1) If "Address" is turned on all responses will begin with the address followed by a comma and space.

Example #1 of OUTPUT_MASK:
User wants the following parameters appended to their pressure reading: units, error flag, and checksum. The OUTPUT_MASK for this configuration would be 1+32+64 = 97. These numbers come from the 'Weight' column of Table 6.1.2.1, for the corresponding parameters.

```plaintext
>>OUTPUT_MASK 97
<<Ready
>>PRESS?
<<+1.8330656E-03, psi,0,ae
```

Format: <pressure reading>,<units>,<error flag>,<checksum>

Example #2 of OUTPUT_MASK:
User has an RS-485 unit and wants the address on the front of every message. They also want the following parameters appended to their pressure reading: stable flag and error flag. OUTPUT_MASK = 16+32+128 = 176.

```plaintext
>> #1OUTPUT_MASK 176
>> 1, Ready
>> #1PRESS?
<< 1, +9.9174523E-01,0,1
```

Format: <address>,<sp><pressure reading>,<stable flag>,<error flag>
6.1.3 MENSOR Legacy Command Set

This command and query set replicates the communications with legacy Mensor products – the 61xx, CPT61xx, 6000, CPT6010 and most of the removable sensors from Mensor pressure calibrators (PCS400M, PCS 6000, CPC6000, CPC8000). The command set enabled and stored sets the power-on command set for the transducer. From any command set, the CMD_SET command can select which one is used.

Command Set 1 – Mensor Legacy

<table>
<thead>
<tr>
<th>P/W</th>
<th>Command</th>
<th>Command String</th>
<th>Return String</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>?</td>
<td>#X?</td>
<td>X<sp>±Y</td>
<td>Basic query to return readings. Pressure in native units are returned</td>
</tr>
<tr>
<td>None</td>
<td>A<x></td>
<td>#X<sp>Y</td>
<td>R</td>
<td>Sets address of sensor X to Y (0-9,A-Z)</td>
</tr>
<tr>
<td>None</td>
<td>CMD_SET<Y></td>
<td>#XCMD_SET<sp>Y</td>
<td>R</td>
<td>Change CPT6020 into different command sets. 1 is Mensor Legacy. 0 is Sensor command set</td>
</tr>
<tr>
<td>None</td>
<td>DC?</td>
<td>#XDC?</td>
<td>X<sp>DC<sp>Y</td>
<td>Returns the date of calibration where Y is mmddyy</td>
</tr>
<tr>
<td>Cust</td>
<td>DC<Y></td>
<td>#XDC<sp>Y</td>
<td>R</td>
<td>Loads the date of calibration where Y is mmddyy</td>
</tr>
<tr>
<td>None</td>
<td>DT?</td>
<td>#XDT?</td>
<td>X<sp>DT<sp>NNN</td>
<td>Returns the temperature a/d DAC offset</td>
</tr>
<tr>
<td>None</td>
<td>FL?</td>
<td>#XFL?</td>
<td>X<sp>FL<sp>NN</td>
<td>Returns the filter – it is the percentage of old reading added to new reading: 0 to 99</td>
</tr>
<tr>
<td>None</td>
<td>FL<X></td>
<td>#XFL<sp>NN</td>
<td>R</td>
<td>Sets the filter percentage</td>
</tr>
<tr>
<td>None</td>
<td>FS?</td>
<td>#XFS?</td>
<td>X<sp>FS<sp>NN</td>
<td>Returns the % FS uncertainty</td>
</tr>
<tr>
<td>None</td>
<td>ID?</td>
<td>#XID?</td>
<td>X<sp> ID <sp> AA<sp>AAAAAAA, BB<sp>BBBBBBB, CC<sp>CCCCCCC, DD<sp>VDD</td>
<td>Returns transducer id. 'AA...' is an id string, 'BB...' is a model string, 'CC...' is the serial number string, D.DD is the firmware version</td>
</tr>
<tr>
<td>None</td>
<td>M?</td>
<td>#XM?</td>
<td>X<sp>M<sp>Y</td>
<td>Returns the operation mode</td>
</tr>
<tr>
<td>None</td>
<td>R-?</td>
<td>#XR-?</td>
<td>X<sp>R<sp>Y</td>
<td>Returns range floor value</td>
</tr>
<tr>
<td>None</td>
<td>R+?</td>
<td>#XR+?</td>
<td>X<sp>R+<sp>Y</td>
<td>Returns range ceiling value</td>
</tr>
<tr>
<td>None</td>
<td>SAVE</td>
<td>#XSSAVE</td>
<td>R</td>
<td>Saves all data to EEPROM. Ready char is sent when save is complete</td>
</tr>
<tr>
<td>None</td>
<td>SC?</td>
<td>#XSC?</td>
<td>X<sp>SC<sp>Y</td>
<td>Returns the customer span correction multiplier</td>
</tr>
</tbody>
</table>
6.1.4 Honeywell PPT Command Set

The CPT9000/6020 has the ability to emulate a Honeywell PPT/PPT2 transducer. Some commands are not implemented, and others do not behave exactly like the PPT/PPT2. As of firmware version 1.13 for P/N 19808001, only RS-232 PPT emulation is available. The original manufacturers operating instructions are the best resource for command/query documentation.

To enter the command set from the command set 0, send CMD_SET 3. To exit the emulation mode, send *99CS0.

General Rules for PPT emulation:
- All commands are terminated in the same manner as the other command sets. Carriage return is required. Line feed is optional.
- All commands have this format (or similar): *ddcc=nnn <cr>
 Where:
 * is the start character
 dd is the address
 cc is a command. Refer to table of commands for full details.
 = equal sign (required in some commands)
 nnn additional characters (required in some commands)
 <cr> carriage return
- RS-232 Ring Network is fully functional.
- Before SET commands, a write enable (WE) command must be sent. It is valid for only the next command. WE must be sent before saves as well.
Honeywell PPT/PPT2 Command

<table>
<thead>
<tr>
<th>Command Query Format</th>
<th>Command Set Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A= *ddA=</td>
<td>*ddA=cccccccc</td>
<td>Data string A - up to 8 characters. To store between power cycles, a save command must be sent properly (*ddSP=ALL)</td>
</tr>
<tr>
<td>B= *ddB=</td>
<td>*ddB=cccccccc</td>
<td>Data string B - up to 8 characters. To store between power cycles, a save command must be sent properly (*ddSP=ALL)</td>
</tr>
<tr>
<td>BP *ddBP</td>
<td>*ddBP=nn</td>
<td>Set baud rate. Cannot change parity. nn=96 will set baud to 9600 nn=19 will set baud to 19200 nn=57 will set baud to 57600</td>
</tr>
<tr>
<td>C= *ddC=</td>
<td>*ddC=cccccccc</td>
<td>Data string C - up to 8 characters. To store between power cycles, a save command must be sent properly (*ddSP=ALL)</td>
</tr>
<tr>
<td>CK *ddCK</td>
<td>N/A</td>
<td>Check for EEPROM checksum error</td>
</tr>
<tr>
<td>CS *ddCS</td>
<td>*ddCSn</td>
<td>Mensor added command - command set control. n=0 will set Sensor command set n=1 will set Mensor legacy command set</td>
</tr>
<tr>
<td>D= *ddD=cccccccc</td>
<td>*ddD=cccccccc</td>
<td>Data string D - up to 8 characters. To store between power cycles, a save command must be sent properly (*ddSP=ALL)</td>
</tr>
<tr>
<td>DC *ddDC</td>
<td>*ddDC=n</td>
<td>Mensor added command - Digit Control (resolution) n=0 will match PPT resolution: 5 digits n=1 will extend resolution to 8 digits.</td>
</tr>
<tr>
<td>DO *ddDO</td>
<td>*ddDO</td>
<td>Set default operating parameters. See table 6.1.4A</td>
</tr>
<tr>
<td>DS *ddDS</td>
<td>*ddDS</td>
<td>Set dead band and sensitivity values. This command is used for OP = U setting. Because of accuracy difference between the CPT9000/6020 and Honeywell PPT/PPT2, this command is not recommended, but it is functional.</td>
</tr>
<tr>
<td>DU *ddDU=cccc</td>
<td>*ddDU=cccc</td>
<td>Set pressure output display unit. cccc = ATM (unit_index = 13) cccc = BAR (unit_index = 14) cccc = CMWC (unit_index = 17) cccc = FTWC (unit_index = 7) cccc = INHG (unit_index = 2) cccc = KGCM (unit_index = 26) cccc = KPA (unit_index = 22) cccc = MBAR (unit_index = 15) cccc = MMHG (unit_index = 19) cccc = MPA (unit_index = 36) cccc = MWC (unit_index = 18) cccc = PSI (unit_index = 1)</td>
</tr>
<tr>
<td>FD N/A *ddFD</td>
<td></td>
<td>Set factory defaults. See table 6.1.4B</td>
</tr>
<tr>
<td>I= *ddI=</td>
<td>*ddI=cn</td>
<td>Set integration time, Rn and Mn forms. The fastest output is limited to ~20ms. c = R : Readings per second c = M : Readings per 100 ms n = 1 - 120 : Controls integration time in conjunction with R or M.</td>
</tr>
</tbody>
</table>
Maintenance and Recalibration

| ID | ^ddID | ^ddID=nn | Set PPT device ID or group number.
| | | | nn = 00 : changes all addresses on ring network to 0 (null)
| | | | nn = 01 - 88 : unit numbers itself with 'nn', increments 'nn' by 1,
| | | | and transmits the message.
| | | | Makes ring network address sequential
| | | | Nn = 89 : unit number itself with device ID 89, and changes
| | | | 'nn' to 99, and retransmits.
| | | | nn = 90 - 98 : unit assigns itself group number to 'nn' and
| | | | transmits the message unchanged.
| | | | nn = 99 : unit does not change its address, changes 'nn' to
| | | | 'ER' and transmits the message unchanged.

| IN | N/A | ^ddIN | Initialize or reset PPT processor.
| | | | ^ddIN : stops continuous output modes
| | | | ^ddIN=RESET : Does full reset on microprocessor. Unsaved data is lost.

| M= | ^ddM= | N/A | Reads maximum full scale setting

| MO | ^ddMO= | ^ddMO=cn | Set power-up mode parameters. See PPT manual. Default is X2M1. P4 not available, no EEPROM checksum error, IN=RESET startup message will be the same as normal power up messages.

| OP | ^ddOP | ^OP=c | Set operating mode parameters. Semi functional.
| | | | c = A|U : Recommendation is to keep 'A'. 'A' transmits all readings in continuous output mode. 'U' transmits only readings that fall outside of last reading dead band.
| | | | c = X|W : CPT9000/6020 has a stall monitor (much like a watchdog timer), and if the ADC ever stalls out for 50 ms, then the processor will restart the ADC. This currently cannot be turned off.

| P= | ^ddP= | N/A | Read PPT production date

| P1 | ^ddP1 | N/A | Single pressure reading (ASCII)
| | | | Continuous pressure reading (ASCII)

| RS | ^ddRS | N/A | Read status of error conditions. Will output 0000 for no errors present, and 0001 for errors present.

| S= | ^ddS= | N/A | Read PPT factory serial number

| SP | N/A | ^ddSP=ALL | Store RAM parameters in EEPROM

| T= | ^ddT= | ^ddT=SET | Set tare value (gauge only)
| | | | Single temperature reading (°C)
| | | | Continuous temperature reading (°C)
| | | | Single temperature reading (°F)
| | | | Continuous temperature reading (°F)
| | | | Turn On/Off tare control

| U= | ^ddU= | ^ddU= | Set user supplied pressure units

| V= | ^ddV= | N/A | Read PPT software code version

| WE | N/A | ^ddWE | Write enable for RAM/EEPROM

| X= | ^ddX= | ^ddX=nn | Set “m” of user mx+b control. Formula : SPAN = 1 +
| | | | (nn*0.005%FS)

| Z= | ^ddZ= | ^ddZ=nn | Set “b” of user mx+b control. Formula : Zero = nn * 0.005%FS

26 WIKA operating instructions process pressure transducer, model CPT6020
Maintenance and Recalibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID (Group ID)</td>
<td>90</td>
</tr>
<tr>
<td>ID (Individual ID)</td>
<td>00 (null)</td>
</tr>
<tr>
<td>I (Integration Time)</td>
<td>M2</td>
</tr>
<tr>
<td>P (Production Date)</td>
<td>9/23/20</td>
</tr>
<tr>
<td>A= (Data String A)</td>
<td>00000000</td>
</tr>
<tr>
<td>B= (Data String B)</td>
<td>00000000</td>
</tr>
<tr>
<td>C= (Data String C)</td>
<td>00000000</td>
</tr>
<tr>
<td>D= (Data String D)</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Table 6.1.4A - Parameters set with DO command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Integration Time)</td>
<td>M2</td>
</tr>
<tr>
<td>P (Production Date)</td>
<td>9/23/20</td>
</tr>
<tr>
<td>OP (Operating Parameters)</td>
<td>ANEW</td>
</tr>
<tr>
<td>DS (Dead Band Sensitivity)</td>
<td>00C0</td>
</tr>
<tr>
<td>MO (Power Up Mode)</td>
<td>X2M1</td>
</tr>
<tr>
<td>DC (Resolution Control)</td>
<td>0</td>
</tr>
<tr>
<td>A= (Data String A)</td>
<td>00000000</td>
</tr>
<tr>
<td>B= (Data String B)</td>
<td>00000000</td>
</tr>
<tr>
<td>C= (Data String C)</td>
<td>00000000</td>
</tr>
<tr>
<td>D= (Data String D)</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Table 6.1.4B - Parameters set with DO command
7. Maintenance and Recalibration

For contact details, please see Chapter 1 “General information” or the back page of the operating instructions.

7.1 Maintenance
The CPT6020 was designed for maintenance-free operation. User maintenance is not recommended. If you have questions not covered by this manual, call 1-800-984-4200 (USA only), or 1-512-396-4200 for assistance, or send an email to techservices@mensor.com.

7.1.1 Beyond the Warranty
Take advantage of Mensor’s expert product care. Mensor provides complete maintenance and calibration services, available for a nominal fee. Our service staff is knowledgeable in the innermost details of all of our transducers. We maintain units that are in operation in many different industries and in a variety of applications, and by users with a wide range of requirements. Returning your transducer to Mensor for service benefits you in several ways:

- Our extensive knowledge of the transducer assures you that it will receive expert care.
- Repair or replacement of the CPT6020 transducers will be available up to 7 years after the production life cycle of the product, pending external vendor parts or equivalent parts availability. The production life cycle is defined as the time from the product series launch to the announcement of discontinuation (typically 8 to 10 years).
- All repairs should be performed by Mensor due to the complexity of performing these repairs.

7.2 Recalibration
The CPT6020 automatically calculates the pressure reading for all effects of temperature, hystereses, repeatability and non-linearity within the compensated temperature range. The Process is referred to as dynamic compensation because each reading is adjusted before it is output. Thus, a calibrated CPT6020 operated within its temperature band, and with proper zero and span adjustments, will provide accurate pressure measurements.

The CPT6020 should have the calibration verified periodically to ensure stability. The recommended calibration interval for this instrument is given in the Specifications section under “Calibration Interval” in Section 9.1.

7.2.1 Calibration Services by Mensor or WIKA worldwide
Mensor and WIKA worldwide have extensive experience and knowledge of Mensor products. Calibration of the transducers can be performed at the addresses below or by competent internal or external labs using the procedures in this section.

<table>
<thead>
<tr>
<th>Service Center USA</th>
<th>Service Center Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mensor</td>
<td>WIKA Alexander Wiegand SE & Co. KG</td>
</tr>
<tr>
<td>tel: 1-512-396-4200</td>
<td>tel: (+49) 9372 132-5049</td>
</tr>
<tr>
<td>1-800-984-4200</td>
<td>fax: (+49) 9372 132-8005049</td>
</tr>
<tr>
<td>fax: 1-512-396-1820</td>
<td>email: CTServiceTeam@wika.com</td>
</tr>
<tr>
<td>email: tech.support@mensor.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Center China</th>
<th>WIKA Instrumentation PTE. LTD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIKA China</td>
<td>13 Kian Teck Crescent</td>
</tr>
<tr>
<td>website: www.wika.cn</td>
<td>628878 Singapore</td>
</tr>
<tr>
<td>contact: Eric Wang</td>
<td>Tel: +65 6844 5506</td>
</tr>
<tr>
<td>tel: (+86) 512 6878 8000</td>
<td>E-mail: info@wika.sg</td>
</tr>
<tr>
<td>fax: (+86) 512 6809 2321</td>
<td></td>
</tr>
</tbody>
</table>
7.2.2 Environment

For maximum accuracy, allow the CPT6020 to warm up a minimum of 15 minutes in ambient temperature within the compensated range prior to a calibration. In addition, the instrument should be at rest on a stable platform that is free of excessive vibration, shock and with minimal temperature change.

7.2.3 Pressure Standards

Mensor recommends the use of appropriately accurate primary pressure standards when calibrating this instrument. Such standards should be sufficient so that when the techniques of the ISO Guide to the Expression of Uncertainty in Measurement (GUM) are applied, the instrument meets its accuracy statements as required by ISO/IEC 17025:2005, or other applicable standards.

7.2.4 Media

The recommended calibration medium is dry nitrogen or clean dry instrument air. For ranges above 5 psi any liquid media compatible with 316L SS is acceptable. A reference height variation between the standard and the CPT6020 can cause errors. A calculation should be made to compensate for this difference.

7.2.5 Setup

The schematic in Figure 7.2.5 shows a typical setup used to calibrate the CPT6020.

> Objects in the dashed perimeter are only needed for sub atmospheric pressure points.

When calibrating absolute transducers and approaching very low absolute pressures, you must use a needle valve or controlled leak to maintain a small pressure (600 mTorr, 80 Pa recommended) throughout the system. If you try to run calibration points below that pressure, the system will have significant pressure gradients in it unless left to stabilize for an extended period of time. When setting span while calibrating higher pressures (6,015 psi/ 401 bar) you must allow time (10 min. recommended) for temperature and pressure to stabilize.
7.2.6 Calibration & Communication Software
The Operation and Calibration software utility is available on the Mensor.com website from the main menu select Service/Calibration then Download Software then PC Software.

The purpose of this software is to communicate with the CPT6020 transducer. Calibration of the transducer output and configuration of various parameters can be accomplished. It has many features that allow you to read and adjust the rich feature set including:

- Changing filter settings
- Modifying the output format of the sensor
- Changing the pressure units output

It also has many features to adjust various calibration parameters after the appropriate password is sent:

- Setting the calibration date
- Setting the calibration interval
- Setting custom pressure units
- Setting Zero and Span
- Resetting the calibration password
- Restoring the factory calibration
8. Dismounting, Return and Disposal

WARNING!
Physical injuries and damage to property and the environment through residual media
Residual media in the dismounted instrument can result in a risk to persons, the environment and equipment.
▶ Wear the requisite protective equipment (see Chapter 3.6 “Personal protective equipment”).
▶ Observe the information in the material safety data sheet for the corresponding medium.
▶ Wash or clean the dismounted instrument, in order to protect persons and the environment from exposure to residual media.

8.1 Dismounting

WARNING!
Physical injuries and damage to property and the environment through residual media
Upon contact with hazardous media (e.g. oxygen, acetylene, flammable or toxic substances), harmful media (e.g. corrosive, toxic, carcinogenic, radioactive), and also with refrigeration plants and compressors, there is a danger of physical injuries and damage to property and the environment.
▶ Before storage of the dismounted instrument (following use) wash or clean it, in order to protect persons and the environment from exposure to residual media.
▶ Wear the requisite protective equipment (see Chapter 3.6 “Personal protective equipment”).
▶ Observe the information in the material safety data sheet for the corresponding medium.

WARNING!
Risk of burns
During dismounting there is a risk of dangerously hot media escaping.
▶ Let the instrument cool down sufficiently before dismounting it!

WARNING!
▶ Power should switched off before disconnecting the device.

WARNING!
Physical injury
When dismounting, there is a danger from aggressive media and high pressures.
▶ Wear the requisite protective equipment (see Chapter 3.6 “Personal protective equipment”).
▶ Observe the information in the material safety data sheet for the corresponding medium.
▶ Only disconnect the pressure measuring instrument/measuring assembly/test and calibration installations once the system has been de-pressurised.
8.2 Return

Strictly observe the following when shipping the instrument:
All instruments delivered to WIKA or Mensor must be free from any kind of hazardous substances (acids, bases, solutions, etc.)
and must be cleaned before being returned.

WARNING!

Physical injuries and damage to property and the environment through residual media

Residual media in the dismounted instrument can result in a risk to persons, the environment and equipment.
▶ With hazardous substances, include the material safety data sheet for the corresponding medium.

When returning the instrument, use the original packaging or a suitable transport packaging.

To avoid damage:
1. Wrap the instrument in an anti-static plastic film.
2. Place the instrument along with shock-absorbent material in the packaging.
 Place shock-absorbent material evenly on all sides of the transport packaging.
3. If possible, place a bag containing a desiccant inside the packaging.
4. Label the shipment as a highly sensitive measuring instrument.

Instruments with lithium ion rechargeable batteries or lithium metal batteries

The included lithium ion rechargeable batteries or lithium metal batteries are subject to the requirements of the dangerous Goods
Act. For shipping, special packaging and labelling requirements must be observed. A dangerous goods expert must be consulted
when preparing the item to be shipped. Do not send any damaged or defective rechargeable batteries. Cover open contacts with
adhesive tape and package the rechargeable battery such that it cannot move inside the package and short circuits are prevented.
The different requirements of the relevant transport carriers as regard to the Dangerous Goods Act and also additional national
regulations must be observed.

Information on returns can be found under the heading “Service” on our local website.

8.3 Disposal

Incorrect disposal can put the environment at risk.
Dispose of instrument components and packaging materials in an environmentally compatible way and in accordance with the
country-specific waste disposal regulations.

This marking on the instruments indicates that they must not be disposed of in domestic waste. The disposal is
carried out by return to the manufacturer or by the corresponding municipal authorities.
9. Specifications

Accuracy specifications presented herein are obtained by comparison with primary standards traceable to a national metrology institute or recognized international standard organization. These specifications are obtained in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). The calibration program at Mensor is accredited by the American Association of Laboratory Accreditation (A2LA) as complying with both the ISO/IEC 17025:2005 and the ANSI/NCSL Z540-1-1994 standards. If there is an exception to the requirements and recommendations of Z540 during a calibration the exception is noted on the individual calibration certificate.

Mensor reserves the right to change specifications without notice.

9.1 Measurement Specification

<table>
<thead>
<tr>
<th>Measurement Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.020% Full Span</td>
</tr>
<tr>
<td>Measuring ranges</td>
<td></td>
</tr>
<tr>
<td>Gauge pressure</td>
<td>0 ... 0.36 to 0 ... <15,000 psig</td>
</tr>
<tr>
<td></td>
<td>(0 ... 25 mbar to 0 ... 100 bar)</td>
</tr>
<tr>
<td>Bi-directional pressure</td>
<td>+/- 0.18 to -15 ... 15,000 psig</td>
</tr>
<tr>
<td></td>
<td>(+/-12.5 mbar to -1 to 1000 bar)</td>
</tr>
<tr>
<td>Absolute pressure</td>
<td>0 ... 5 psia to 0 ... 15,015 psia</td>
</tr>
<tr>
<td></td>
<td>(0 ... 350 mbar to 0 ... 1001 bar abs.)</td>
</tr>
<tr>
<td>Calibration interval</td>
<td>180 days</td>
</tr>
<tr>
<td>Pressure units</td>
<td>39 and 1 user defined</td>
</tr>
<tr>
<td>CPT6020 as barometric reference</td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>8 ... 17 psi abs. (552 ... 1,172 mbar abs.)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.020% of reading</td>
</tr>
</tbody>
</table>

1) It is defined by the total measurement uncertainty, with the coverage factor (k = 2) and includes the intrinsic performance of the instrument, the measurement uncertainty of the reference instrument, long-term stability, influence of ambient conditions, drift and temperature effects over the compensated range with recommended zero point adjustment every 30 days.

2) > 1500 psi is sealed gauge

3) The negative portion of a bidirectional range has the same accuracy as the equivalent positive range.
Specifications

9.2 General Specification

Case
- Orientation effects: Negligible – completely removable with re-zeroing
- Dimensions: See technical drawings
- Weight: ~250 g (depending on range)

Display
- Resolution: 100 ppb or better
- Warm-up time: 15 min.
- Boot time: 750 ms

Connections
- Pressure Port: FSAE J514/JIC 4 or Autoclave® F250C (or pressure ranges > 400 bar (> 6,000 psi))
- Reference Port, Absolute & >1500 psi Gauge: Sealed Relief Valve
 - <1500 psi Gauge: 1/16” Barb fitting
- Overpressure limit: 2X proof, 3X burst; static pressure < 50 psig (3.44 bar)

Materials, wetted parts
- Ranges ≤ 5 psi: Silicon, 316 SS, glass filled resins, epoxy
- Ranges > 5 to 1500 psi: 316 SS
- Ranges >1500 psi: 316 SS, Fluorocarbon Rubber

Pressure media
- Ranges ≤ 5 psi: clean, dry, non-corrosive gases
- Ranges > 5 psi: media compatible with the listed wetted parts.

Voltage supply
- Power supply: RS-232/RS-485: DC 9-18 V (DC 12 V nominal)
 - USB: DC 3.0 -5.25 V (DC 5 V nominal) Bus Powered
- Power consumption:
 - RS-232/RS-485: < 26 mA at DC 12 V +/- 5% (0.40 Wmax)
 - USB: <84 mA at DC 5 V +/- 5% (0.45Wmax)

Permissible ambient conditions
- Compensated temperature range: 0 to 50 °C (32 to 122 °F)
- Operating temperature range: -40 to 85 °C (-40 to 185 °F)
- Storage temperature range: -40 to 85 °C (-40 to 185 °F)
- Humidity: 0 ... 95% r.h. (non-condensing)
- Operating altitude: <3000 meters (10,000 feet)

Operating environment
- IP67

Measure port internal volume
- <1 cc

Reference port internal volume
- ~ 40 cc

Communication
- Interface: USB 2.0, RS-232, or RS-485
- Baud rate: Default 57600 baud - 9600, 19200, 38400 and 115200 user selectable
- Measuring rate: 50 values/second, default - (factory adjustable)

4) Sealed Relief Valve has Fluorocarbon rubber O-ring with a release pressure setting of 10-20 psig (0.68-1.37 bar)

9.3 Approvals and Certificates

Logo
- **EU Declaration of Conformity**
 - EU Importer: WIKA, 63911 Klingenberg, Germany
 - Country: European Union

- **UKCA Declaration of Conformity**
 - Importer: WIKA Instruments Ltd, Unit 6 & 7 Goya Business Park, The Moor Road, Sevenoaks Kent, TN15 5GY
 - Country: Great Britain

Certificates
- Calibration:
 - Standard: A2LA accredited calibration certificate (standard on factory)
 - Optional: DKD/DAkkS calibration certificate

34 WIKAl operating instructions process pressure transducer, model CPT6020
Specifications

9.4 Dimensions in mm (in)

1. Shown is a gauge variant with 1/16" barbed reference port
2. Maximum dimension for absolute variant

<table>
<thead>
<tr>
<th>Low Pressure Version</th>
<th>Medium Pressure Version</th>
<th>High Pressure Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pressure < 1500 psi)</td>
<td>(1500 to 6000 psi)</td>
<td>(6000 to 15,000 psi)</td>
</tr>
</tbody>
</table>

- **≤1500 psi**
 - **(103.42 bar)**
- **1500 to 6000 psi**
 - **(103.42 to 413.68 bar)**
- **6000 to 15000 psi**
 - **(413.68 to 1034.21 bar)**
10. Accessories

10.1 Fittings & Gaskets

Mensor supplies a customer specified fitting with each transducer. Available fittings to connect to the transducer have the following Mensor Part numbers:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000604023</td>
<td>¼” Male NPT</td>
</tr>
<tr>
<td>6000604024</td>
<td>7/16-20 SAE</td>
</tr>
<tr>
<td>6000604025</td>
<td>¼ BSPP</td>
</tr>
<tr>
<td>4250040006</td>
<td>Copper gasket washer</td>
</tr>
</tbody>
</table>

Many other fittings are available, consult the factory if you need assistance.

10.2 Accessories

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4050060021</td>
<td>Communication Cable</td>
</tr>
<tr>
<td>0020528001</td>
<td>Power supply & RS-232 communication cable</td>
</tr>
<tr>
<td>0020528002</td>
<td>Power supply and RS-485 communication cable</td>
</tr>
</tbody>
</table>